Cho tam gia ABC vuong tai B. Ve duong cao BH. tim so do cac goc cua tam giac ABC biet HC-HB=AB
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la \(\frac{5}{12}\), canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet \(\frac{AB}{AC}=\frac{5}{7}\), duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm. Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, \(\frac{HB}{HC}=\frac{1}{4}\).
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheo AC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
trời ơi nhiều quá sao làm nổi nhìn thấy chán
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
Bạn học lớp 9 mà đúng ko...mấy bài này áp dụng hệ thức lượng trong tam giác vuông và vài bài có tính chất đường phân giác là ra thoy
Cho tam giac ABC can tai A co AD la duong trung tuyen
a)Chung minh tam giac ABD= tam gaic ACD va AD vuong goc voi BC
b)Cho AB=10cm,BC=16cm. Tinh do dai AD va so sanh cac goc cua tam giac ABC.
c) Ve duong trung tuyen CF cua tam giac ABC cat AD tai M. Tinh do dai AM.
d) Ve DH vuong goc AC tai H, tren canh AC va canh DC lan luot lay hai diem E,K sao cho AE=AD va DK=DH. Chung minh: EK vuong goc voi BC
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
cho tam giac ABC vuong tai A. Ke duong cao AH . Tu H ke HD vuong goc AC,HE vuong goc AB. Goi M,N lan luot la trung diem cua cac doan thang HB,HC. Chung minh tu giac DEMN la hinh thang vuong
1 :cho tam giac ABC co 3goc nhon, ve 2duong cao AD vaBE cat tai H. cho biet goc ABC=50 do
a, chung minh CHvuong goc AB
b, tinh goc BHD va DHE
2 :cho tam giac ABC vuong tai A,DB la tia phan giac cua goc B, tren tia BC lay diem E sao cho AB=BE, goi H la giao diem cua AB voi DE
a, chung minh DE vuong goc BE
b, c\m BD la duong trung truc cua AE
c, c/m AE song song voi HC
(ve hinh luon giup tui nha thanks nhiu )
Bài 2:
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a) Ta có: \(\widehat{HAB}+\widehat{HBA}=90^0\)
\(\widehat{HAB}+\widehat{HAC}=90^0\)
suy ra: \(\widehat{HBA}=\widehat{HAC}\)
Xét 2 tam giác vuông: \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) (CMT)
suy ra: \(\Delta HBA~\Delta HAC\)
b) \(BC=BH+HC=25+36=61\)cm
\(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)
suy ra: \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm
\(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm
p/s: tham khảo
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: \(BC=HB+HC=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)
cho tam giac ABC can tai A (goc A nhon).Ve duong phan giac cua goc BAC cat BC tai H.
a) chung minh HB=HC va AH vuong goc BC.
b) voi AB=30cm,BC=36cm.tinh do dai AH.
c) ve duong trung tuyen BM cua tam giac ABC cat AH tai G. tinh do dai AG va BM.
d) qua H vẽ đường thẳng song song với AC cắt AB tại D. Chứng minh ba điểm C,G,D thẳng hàng.
a,tam giác abh = tam giác ach (g.c.g)
=>bh=hc
=>góc ahb=góc ahc mà mà góc ahb + góc ahc=180độ
=>góc ahb=góc ahc =90độ
=>ah vuông góc với bc
b,bh=36:2=18.áp dụng định lí PY-TA-GO,ta có:
ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah^2=30^2-18^2
=>ah=24
bai 1co tam giac abc can tai a tren tia doi cua cac tia bc va cb lay hai diem d va e sao cho ce = bd goi m la trung diem cua bc tu b va c ke bh vuong goc voi ad va ck vuong goc voi ae .cm 3 dt bh ck va am cung di qua mot diem
bai 2 cho tam giac abc vuong tai a goc c bang 30 do duong cao ah tren doan hc lay diem d sao cho hd=hb tu c ke ce vuong goc voi ad cmr
a, tam giac abd deu
b,eh song song voi ac
bai 3 cho tam giac abc co goc a = 90 do qua a ke dt d tu b va c ke bd vuong goc voi dt d va ce vuong goc voi dt d tinh do dai de theo bd va ce
bai 4 cho tam giac abc vuong tai a hai duong phan giac bm va cn tu m va n ke mmphay va nnphay vuong goc voi bc cmr goc mphayanphay bang 45 do
Cho tam giac ABC vuong tai A :
A.Cho biet AB=9cm;BC=15cm.Tinh AC roi so sanh cac goc cua tam giac ABC
B.Tren BC lay D sao cho BD=BA.Tu D ve duong thang vuong goc voi BC cat AC tai E.Chung minh tam giac EBA= tam gaic EBD
C.Tren tia doi cua tia ED lay diem F sao cho DF=DE.Chung minh rang goc DEC= goc DCE
D.Tu D ve DM vuong goc CE ; DN vuong goc CF (M thuoc CE ; N thuoc CF )
Cho goc ECF=60 do va CD= 10cm.Tinh MN (lam tron ket qua den hang don vi )