Tính
\(4x^2-12x-64y^2+9\)
\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{-2}{x^2+12x+9}\)
Giải phương trình:
\(\frac{\left(6x^4+4x^3-12x^2+9\right)\left(2x^3+7\right)-3\left(4x^3+5\right)\sqrt{6x^4+4x^3-12x^2+9}}{\sqrt{\left(6x^4+4x^3-12x^2+9\right)^3}-18x^3-9}=1\)
=))
rút gọn biểu thức c,C=(5x+2)3+(5x-2)3-2(x-2)(x+2)
d,D=(4x-3)(16x2+12x+9)-(4x+3)(16x2-12x+9)
c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)
=250x^3+120x-2x^2+8
=250x^3-2x^2+120x+8
d: D=(4x)^3-3^3-(4x)^3-3^3
=64x^3-27-64x^3-27
=-54
c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)
\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)
\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)
\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)
\(=250x^3-2x^2+120x+8\)
d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)
\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)
\(=64x^3-27-\left(64x^3+27\right)\)
\(=64x^3-27-64x^3-27\)
\(=-27-27\)
\(=-54\)
phân tích đa thức thành phân tử
a, x^2y +x^2y^2-xy^2
b,3xy-6y+x^2-2x
c, x^2-12x+36-64y^2
d,x^2+7x+10
a.
\(=xy\left(x+xy-y\right)\)
b.
\(3xy-6y+x^2-2x=3y\left(x-2\right)+x\left(x-2\right)\)
\(=\left(3y+x\right)\left(x-2\right)\)
c.
\(x^2-12x+36-64y^2=\left(x-6\right)^2-\left(8y\right)^2\)
\(=\left(x-6+8y\right)\left(x-6-8y\right)\)
d.
\(x^2+7x+10=x^2+2x+5x+10=x\left(x+2\right)+5\left(x+2\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
giải phương trình lớp 8:(12x^2+12x+11)/(4x^2+4x+3)=(5y^2-10y+9)/(y^2-2y+2)
Ta có : \(\frac{12x^2+12x+11}{4x^2+4x+3}=\frac{5y^2-10y+9}{y^2-2y+2}\)
\(\Leftrightarrow\frac{3\left(4x^2+4x+3\right)+2}{4x^2+4x+3}=\frac{5\left(y^2-2y+2\right)-1}{y^2-2y+2}\)
\(\Leftrightarrow3+\frac{2}{4x^2+4x+3}=5-\frac{1}{y^2-2y+2}\)
Do \(\frac{2}{4x^2+4x+3}=\frac{2}{\left(2x+1\right)^2+2}\le\frac{2}{2}=1\) \(\Rightarrow3+\frac{2}{4x^2+4x+3}\le4\left(1\right)\)
\(\frac{1}{y^2-2y+2}=\frac{1}{\left(y-1\right)^2+1}\le\frac{1}{1}=1\) \(\Rightarrow5-\frac{1}{y^2-2y+2}\ge5-1=4\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow VT=VP=4\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)
Vậy ....
a) Tính (6x³++11x²-12x-9) b) Tìm x biết 1) 2x²+4x-0 2) (x+2)²-(x+2)(x+1)-0
b:
1: \(\Leftrightarrow2x\left(x+2\right)=0\)
=>x=0 hoặc x=-2
Điền vào dấu *
a,(8x^3+12x^2+(*)+(*)=(*+*)^3
b,27x^3-(*)+(*)=(*-*)^3
c,(*-*)(*+*+*)=(*)-64y^3
Đặt (a + b)3 = a3 + 3a2b + 3ab2 + b3 = 8x3 + 12x2 + ... + ...
= (2x)3 + 3.(2x)2.1 + ... + ...
=> a = 2x ; b = 1 => 8x3 + 12x2 + 6x + 1 = (2x + 1)
tìm gtnn
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{3}{2}\)
Xin lỗi vì tớ hỏi 2 câu rồi ạ! Mong các bạn thông cảm
\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)
\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)
\(\Leftrightarrow\frac{-1}{\left(3-2x\right)^2}-\frac{3}{\left(3-2x\right)\left(3+2x\right)}=\frac{4}{\left(2x+3\right)^2}\)
\(\Leftrightarrow-4x^2-12x-9-27+12x^2-16x^2+48x-36=0\)
\(\Leftrightarrow-8x^2+36x-72=0\)
Rút -4 ra ngoài \(\Leftrightarrow2x^2-9x+18=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=3\\x=6\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=6\end{cases}\left(tmđk\right)}\)