Những câu hỏi liên quan
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 7:35

Cho đa thức F(x) = 2ax2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4

Vì đa thức F(x) có nghiệm x = -1 nên thay F(-1) = 0

⇒ 2a - b = 0 ⇒ b = 2a (0.5 điểm)

Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a

Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1 (0.5 điểm)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 8 2017 lúc 6:17

Vì x = -1 là nghiệm của H(x) nên

H(-1) = 0 ⇒ 2a(-1)2 + b(-1) = 2a - b = 0 ⇒ b = 2a

Vì H(1) = 4 ⇒ 2a.12 + b.1 = 2a + b = 4 ⇒ b = 4 - 2a

Ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1, từ đó b = 2. Chọn B

Bình luận (0)
TK
Xem chi tiết
HS
10 tháng 5 2018 lúc 20:03

Thay x= - 1 vào đa thức , ta có

F(x)= 2a(-1)2 + b(-1)

F(x)= 2a-b

Đặt F(x)=0, ta có :

2a-b=0=> 2a = b hay b gấp đôi a

Bình luận (2)
HP
14 tháng 5 2018 lúc 12:14

ccmnr

Bình luận (0)
PT
Xem chi tiết
NT
18 tháng 12 2021 lúc 10:19

\(\Leftrightarrow x^3-2x^2-2x^2+4x+2x-4-a+4⋮x-2\)

hay a=4

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 12 2023 lúc 9:18

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+4x^3-8x^2+\left(a+8\right)x^2-x\left(2a+16\right)+\left(2a+16+b\right)x-2\left(2a+16+b\right)+4a+32+2b+c\)

\(=\left(x-2\right)\left(2x^3+4x^2+x\left(a+8\right)+2a+16+b\right)+4a+2b+32+c\)

=>\(\dfrac{f\left(x\right)}{x-2}=2x^3+4x^2+x\left(a+8\right)+2a+16+b+\dfrac{4a+2b+32+c}{x-2}\)

f(x) chia hết cho x-2 nên \(4a+2b+32+c=0\)(1)

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+6x^2+4x^3-16x^2+12x+\left(a+10\right)x^2-4x\left(a+10\right)+3a+30+x\left(4a+28+b\right)+c-3a-30\)

\(=\left(x^2-4x+3\right)\left(2x^2+4x+a+10\right)\)+x(4a+28+b)+c-3a-30

f(x) chia cho x2-4x+3 dư -x+2 nên ta có: 

\(\left\{{}\begin{matrix}4a+28+b=-1\\c-3a-30=2\end{matrix}\right.\)(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+2b+32+c=0\\4a+b+28=-1\\c-3a=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4a+2b+c=-32\\4a+b=-29\\-3a+c=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-3\\-3a+c=32\\4a+b=-29\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+3a=-35\\4a+b=-29\\b+c=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-a=-6\\4a+b=-29\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-29-4a=-29-4\cdot6=-53\\c=-3-b=-3-\left(-53\right)=50\end{matrix}\right.\)

Bình luận (0)
TA
Xem chi tiết
NN
Xem chi tiết
PH
25 tháng 11 2018 lúc 15:20

\(ax^3+bx-24=\left(x+1\right)Q\left(x\right)\)(1)

\(ax^3+bx-24=\left(x+3\right)P\left(x\right)\) (2) (P(x),Q(x) là các thương)

Thay x = -1 vào (1) và x = -3 vào (2), ta có: 

\(\hept{\begin{cases}a.\left(-1\right)^3+b.\left(-1\right)-24=0\\a.\left(-3\right)^3+b.\left(-3\right)-24=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-a-b=24\\-27a-3b=24\end{cases}}\Rightarrow\hept{\begin{cases}-3a-3b=72\\-27a-3b=24\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-3a-3b-\left(-27a-3b\right)=72-24\\-a-b=24\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}24a=48\\a+b=-24\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-26\end{cases}}\)

Bình luận (0)
TA
Xem chi tiết
HN
Xem chi tiết
H24
30 tháng 1 2022 lúc 11:00

undefined

Bình luận (0)
AH
30 tháng 1 2022 lúc 13:36

Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$

$x^2+x-2=(x-1)(x+2)$

Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$

$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức) 

$\Leftrightarrow a+b-1=-8a+4b+32=0$

$\Leftrightarrow a=3; b=-2$ 

 

Bình luận (0)