cho hàm số y=f(x)=/x^2-2010x-2011/
Tính f(1),f(-2010)
Bài 1 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 2 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 3 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 4 : Cho đa thức: f(x)= x2-a.x-3 và g(x)= (x3-x2-x-a-1)2015
a, Tìm a biết -1 là 1 nghiệm của f(x)
b, Với a tìm được ở câu a, Tìm nghiệm còn lại của f(x) và tính g(2).
Bài 5: Cho hàm số y= f(x)= a.x2+b.x+c và biết f(0)=2014, f(1)=2015, f(-1)=2017 ,
Tính f(-2).
Mọi người giúp mình với ạ mình đang cần gấp. Mình cảm ơn mọi người nhiều.
Bài 1 : làm tương tự với bài 2;3 nhé
Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)
\(\Rightarrow f\left(1\right)=a+b=1\)
\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)
\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)
Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)
Bài 1 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Mọi người giúp mình với mình đang cần gấp. Mình cảm ơn nhiều.
tìm giá trị nhỏ nhất của A= / x- 2010/ + ( y+ 2011)^2010 +2011 và giá trị của x, y tương ứng
2, tính : A = 2^12*3^5 - 4^6 * 9^2 / (2^2 * 3)^6 + 8^4 *3^5 - 5^10 *7^3 - 25^5 *49^2/ (125*7)^3 + 5^9 */14^3
3, Cho hàm số y = f(x) = ax^2 + bx +c
Cho biết f(0)= 2010; f(1)=2012 ; f(-1)= 2012. Tính f(-2)
Cho hàm số f(x)=ax^2+bx+c
biết f(0)=2010, f(1)=2011, f(-1)=2012. Tính f(-2)
\(f\left(0\right)=c=2010\)
\(f\left(1\right)=a+b+2010=2011\Rightarrow a+b=1\)(1)
\(f\left(-1\right)=a-b+2010=2012\Rightarrow a-b=2\)(2)
Từ (1) và (2) => a = 3/2; b = -1/2.
Vậy \(f\left(-2\right)=\frac{3}{2}\left(-2\right)^2-\frac{1}{2}\left(-2\right)+2010=6+1+2010=2017\)
Tìm tất cả các hàm số f(x) thỏa mãn điều kiện \(f\left(2010-f\left(0\right)\right)=2010x^2\) \(\forall x\in R\)
cho các số x,y,f thỏa mản đồng thời:
x+y+f=1; x^2+y^2+f^2=1 ; x^3+y^3+f^3=1
tính tổng S= x^2009+y^2010+f^2011
Bài 1 : Xác định đa thức: P(x)= a.x3+b.x2+c.x+d , biết: P(0)=2017, P(1)=2, P(-1)=6,P(2)= -6033.
Bài 2 : Cho hàm số: y= f(x)= a.x2+b.x+c cho biết f(0)=2010, f(1)=2011, f(-1)=2012, Tính f(-2).
Bài 3 : Cho đa thức G(x)= a.x2+b.x+c (a, b, c là các hệ số)
a, Hãy tính G(-1) biết a+c=b - 8.
b, Tìm a, b, c biết: G(0)=4, G(1)= 9, G(2)=14.
Bài 4 : Cho đa thức: f(x)= x2-a.x-3 và g(x)= (x3-x2-x-a-1)2015
a, Tìm a biết -1 là 1 nghiệm của f(x)
b, Với a tìm được ở câu a, Tìm nghiệm còn lại của f(x) và tính g(2).
Bài 5: Cho hàm số y= f(x)= a.x2+b.x+c và biết f(0)=2014, f(1)=2015, f(-1)=2017 ,
Tính f(-2).
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN RẤT GẤP . CẢM ƠN MỌI NGƯỜI NHIỀU.
Bài 1 :
\(P\left(0\right)=d=2017\)
\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)
\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)
\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)
Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)
Thay vào (*) ta được \(a+c=4\)(***)
Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****)
(***) => \(8a+8c=32\)(*****)
Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)
Vậy ....
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP LẮM Ạ.
cho hàm số y=f(x)=a.x^2+b.x+c
biết f(0)=2010;f(1)=2011:f(-1)=2012 Tính f(-2)
bai này hơi khó .Giúp mình vớ
bai
\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\)
\(\Rightarrow c=2010\)
\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\)
\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\)(1)
\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)
\(\Rightarrow a-b+2010=2012\Rightarrow a-b=2\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{1+2}{2}=\frac{3}{2}\\b=\frac{1-2}{2}=\frac{-1}{2}\end{cases}}\)
\(\Rightarrow f\left(x\right)=\frac{3}{2}x^2-\frac{1}{2}x+2010\)
\(\Rightarrow f\left(-2\right)=\frac{3}{2}.4+\frac{1}{2}.2+2010=2017\)
- Ta có: \(f\left(x\right)=a.x^2+b.x+c\)
+ \(f\left(0\right)=a.0^2+b.0+c=c=2010\) (1)
+ \(f\left(1\right)=a.1^2+b.1+c=a+b+c=2011\) (2)
+ \(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=2012\) (3)
- Thay \(c=2010\)vào đa thức (2), (3), ta có:
\(\hept{\begin{cases}a+b=2011-2010\\a-b=2012-2010\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\a-b=2\end{cases}}\)
- Ta lại có: \(a-b=2\)
\(\Leftrightarrow a=b+2\)
- Thay \(a=b+2\)vào đa thức: \(a+b=1\), ta có:
\(b+2+b=1\)
\(\Leftrightarrow2b=-1\)
\(\Leftrightarrow b=-\frac{1}{2}=-0,5\)
- Thay \(b=-0,5\)vào đa thức: \(a+b=1\), ta có:
\(a-0,5=1\)
\(\Leftrightarrow a=1,5\)
Vậy hàm số \(y=f\left(x\right)\)có dạng: \(y=f\left(x\right)=1,5x^2-0,5x+2010\)
\(\Rightarrow f\left(-2\right)=1,5.\left(-2\right)^2-0,5.\left(-2\right)+2010=2017\)
Vậy \(f\left(-2\right)=2017\)
Cho đa thức f(x)=\(1+x+x^2+x^3+...+x^{2010}+x^{2011}\) tính f(x) và F(-1)