Tìm nghiệm nguyên của phương trình 5x2+14xy+10y2-38x-54y+73=0
Tìm nghiệm nguyên của phương trình:
Lời giải:
$x^2-2y^2=5\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên
$x^2-2y^2=5$
$\Leftrightarrow (2k+1)^2-2y^2=5$
$\Leftrightarrow 2k^2+2k-y^2=2$
$\Rightarrow y$ chẵn. Đặt $y=2t$ với $t$ nguyên
PT trở thành: $2k^2+2k-4t^2=2$
$\Leftrightarrow k^2+k-2t^2=1$
Điều này vô lý do $k^2+k-2t^2=k(k+1)-2t^2$ chẵn còn $1$ thì lẻ
Vậy pt vô nghiệm.
Cho phương trình x2 - mx + m - 4 = 0 (x là ẩn ). Chứng minh rằng phương trình có hai nghiệm x1,x2 với mọi m. Tìm tất cả các giá trị nguyên dương của m để (5x1 - 1)(5x2 - 1 ) < 0
\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)
Suy ra pt luôn có hai nghiệm pb với mọi m
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)
\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)
\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)
\(\Leftrightarrow m< \dfrac{99}{20}\)
Vậy...
\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)
Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)
\(=25\left(m-4\right)-5m+1=20m-99\)
\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)
tìm nghiệm nguyên của phương trình 2xy + 4x + 2y + 1 > 5x2 + 2y2
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)
\(\Rightarrow\left(2x-1\right)^2< 3\) (1)
\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))
- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)
\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)
tìm nghiệm nguyên của phương trình
x2+3y2+2xy−18(x+y)+73=0x2+3y2+2xy−18(x+y)+73=0
Tìm nghiệm nguyên của phương trình 2xy + 4x + 2y + 1 > 5x2 + 2y2 . Giúp mình với ạ. Mình cần gấp
tìm nghiệm nguyên của phương trình
\(x^2+3y^2+2xy-18(x+y)+73=0\)
\(\Delta\)không thì dùng cách này cho dễ
\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)
\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)
\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)
\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )
+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )
+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )
+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)
Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }
Giải phương trình nghiệm nguyên 38x+117y=15
m=8 pt trở thành : \(x^2-7x+6=0\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\)
b. để phương trình có nghiệm kép ta có \(\Delta=7^2-4\left(m-2\right)=0\Leftrightarrow m=\frac{57}{4}\)
c. giả sử pt có hai nghiệm, theo viet và giả thiết thỏa mãn ta có
\(\hept{\begin{cases}x_1+x_2=7\\2x_1=5x_2\\x_1.x_2=m-2\end{cases}}\)từ hai phương trình đầu ta giải ra được \(\hept{\begin{cases}x_1=5\\x_2=2\end{cases}}\)thay vào pt cuối ta được m=12
Tìm m để bất phương trình sau vô nghiệm
5 x 2 - x + m ≤ 0
Bất phương trình đã cho vô nghiệm khi và chỉ khi 5 x 2 - x + m ≤ 0 nghiệm đúng với mọi x.
⇔ 1 - 20m < 0 ⇔ m > 1/20
Đáp số: m > 1/20