Ôn thi vào 10

H24

Cho phương trình x2 - mx + m - 4 = 0 (x là ẩn ). Chứng minh rằng phương trình có hai nghiệm x1,x2 với mọi m. Tìm tất cả các giá trị nguyên dương của m để (5x1 - 1)(5x2 - 1 ) < 0

LH
4 tháng 7 2021 lúc 16:46

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

Bình luận (0)
AT
4 tháng 7 2021 lúc 16:50

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
ND
Xem chi tiết
MH
Xem chi tiết
AQ
Xem chi tiết
VL
Xem chi tiết
AQ
Xem chi tiết
GB
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết