Những câu hỏi liên quan
DD
Xem chi tiết
AH
3 tháng 8 2021 lúc 17:25

Lời giải:
Ta thấy \(2^{4n+2}-2=2(2^{4n}-1)=2(16^n-1)\)

$16\equiv 1\pmod 5\Rightarrow 16^n\equiv 1\pmod 5$

$\Rightarrow 16^n-1\equiv 0\pmod 5$

$\Rightarrow 16^n-1\vdots 5$

$\Rightarrow 2(16^n-1)\vdots 10$

Vậy đáp án b.

 

Bình luận (1)
MA
3 tháng 8 2021 lúc 17:48

là b

Bình luận (0)
NT
3 tháng 8 2021 lúc 23:51

Chọn B

Bình luận (0)
Xem chi tiết
TT
Xem chi tiết
H9
10 tháng 11 2023 lúc 18:25

Bài 2: 

a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)  

Mà số này lại chia hết cho 3 nên: 

\(1+a+3+b=4+a+0=4+a\) ⋮ 3 

TH1: \(4+a=6\Rightarrow a=2\)

TH2: \(4+a=9\Rightarrow a=5\)

TH3: \(4+a=12\Rightarrow a=8\) 

Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\) 

b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9 

Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)

Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9

Với b = 0:

\(6+a+0=9\Rightarrow a=3\)

Với b = 5: 

\(6+a+5=18\Rightarrow a=7\)

Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)

Bình luận (1)
H9
10 tháng 11 2023 lúc 18:28

Bài 3:

a) \(13\cdot15\cdot17\cdot19+23\cdot26\)

\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)

Nên tổng chia hết cho 13 tổng là hợp số không phải SNT 

b) \(17^{100}-34\)

\(=17\cdot\left(17^{99}-2\right)\)

Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT 

Bình luận (4)
NT
Xem chi tiết
NT
Xem chi tiết
TM
6 tháng 10 2017 lúc 0:55

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

Bình luận (0)
TM
6 tháng 10 2017 lúc 0:45

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

Bình luận (0)
TT
6 tháng 10 2017 lúc 18:35

dat a+b=x b+c=y c+a=z \(\Rightarrow\) dt tro thanh \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\) \(\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (bdt amgm)

tuong tu \(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\) \(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

\(\frac{\Rightarrow1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}.2\sqrt{\frac{xz}{\left(z+1\right)\left(x+1\right)}}.2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

                =\(8.\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Rightarrow xyz\le\frac{1}{8}\)dau = xay ra khi x=y=z=1/2 hay a=b=c=1/4

Bình luận (0)
NT
Xem chi tiết
LP
Xem chi tiết
YS
15 tháng 2 2016 lúc 16:59

gọi (30n + 17, 12n + 7) = d

=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d

=> (30n + 17) - (12n + 7) chia hết cho d

=> 30 - 12 chia hết cho d

=> mà d lẻ và < 1

=> d = 1

vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau

Bình luận (0)
LP
15 tháng 2 2016 lúc 16:45

làm được bao nhiêu thì làm 

ai làm được nhiêu nhất sẽ dduocj

Bình luận (0)
DT
15 tháng 2 2016 lúc 16:47

cho n thuộc N . CMR các cặp số sau là nguyên tố cùng nhau :30n+17 và 12n+72n+1 và 2n+318n+2 và 30n+324n+7 và 18n+52n+5 và 3n+7

Bình luận (0)
MA
Xem chi tiết
NL
7 tháng 1 2022 lúc 22:17

\(2^{6n}=8^{2n}\equiv1\left(mod7\right)\Rightarrow2^{6n}=7k+1\)

\(\Rightarrow2^{6n+2}=4\left(7k+1\right)=28k+4\)

\(\Rightarrow C=2^{28k+4}+13\)

Mặt khác theo định lý Fermat nhỏ:

\(\left(2;29\right)=1\Rightarrow2^{28}-1⋮29\Rightarrow2^{28}\equiv1\left(mod29\right)\)

\(\Rightarrow2^{28k}\equiv1\left(mod29\right)\Rightarrow2^{28k+4}=16.2^{28k}\equiv16\left(mod29\right)\)

\(\Rightarrow2^{28k+4}+13⋮29\)

Hay \(C⋮29\Rightarrow C\) là hợp số

Bình luận (0)
TT
Xem chi tiết