Những câu hỏi liên quan
PL
Xem chi tiết
TM
20 tháng 3 2021 lúc 13:16

a/ \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)

\(Tacó\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(b+a\right)}=\dfrac{a}{b}\) (vì \(c^2=ab\) )

Vậy....

Bình luận (0)
ND
Xem chi tiết
BH
Xem chi tiết
LN
Xem chi tiết
BH
Xem chi tiết
NL
8 tháng 3 2023 lúc 23:04

Ta chứng minh BĐT sau:

\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)

Thật vậy, BĐT tương đương:

\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)

Áp dụng:

\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
LN
Xem chi tiết
ST
Xem chi tiết
KM
Xem chi tiết
NV
Xem chi tiết
NL
28 tháng 8 2021 lúc 22:34

\(\dfrac{a^2+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)-a\left(b+c\right)}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}-a\)

\(\Rightarrow VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}-\left(a+b+c\right)\)

Mặt khác áp dụng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Rightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge a+b+b+c+a+c=2\left(a+b+c\right)\)

\(\Rightarrow VT\ge2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c\) (đpcm)

Bình luận (0)
TN
Xem chi tiết
TN
23 tháng 3 2023 lúc 22:08

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

Bình luận (0)