tìm x, biết:
a)(x-3)2 - 4 = 0
b) x2 - 2x = 24
Tìm x,biết:
a)2x.(x+4)-(x-1).(2x+3)=0
b)x2-2x-3=0
a) \(2x\left(x+4\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+8x-2x^2-x+3=0\)
\(\Leftrightarrow7x=-3\Leftrightarrow x=-\dfrac{3}{7}\)
b) \(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow2x^2+8x-2x^2-x+3=0\\ \Leftrightarrow7x=-3\\ \Leftrightarrow x=-\dfrac{3}{7}\\ b,x^2-2x-3=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
a: Ta có: \(2x\left(x+4\right)-\left(x-1\right)\cdot\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+8x-2x^2-3x+2x+3=0\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
b: ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
bài 3: tìm x , biết:
a)(x+3).(2x-1)-(x-3).(x+1)=0
b)(x+4).(2x-3)-3.(x-2).(x+2)=0
c)x.(x-5).(x+5)-(x+2).(x2-2x+4)=17
a) \(\left(x+3\right)\left(2x-1\right)-\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow2x^2+5x-3-x^2+2x+3=0\)
\(\Leftrightarrow x^2+7x=0\Leftrightarrow x\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
b) \(\left(x+4\right)\left(2x-3\right)-3\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow2x^2+5x-12-3x^2+12=0\)
\(\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Tìm x, biết:
a) (2x-1)2+(x+3)2-5(x+7)(x-7)=0
b) x(x-5)(x+5)-(x+2)(x2-2x+4)=3
giúp tui với
\((2x-1)^2+(x+3)^2-5(x+7)(x-7)=0\)
\(< =>4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\\ < =>4x^2-4x+1+x^2+6x+9-5x^2+245=0\\ < =>2x+255=0\\ < =>2x=-255=>x=\dfrac{-255}{2}\)
Vậy \(x=\dfrac{-255}{2}\)
\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x+255=0\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
tìm x, biết:
a) 9x2+36=0
b) 3(x+4)-x2-4x=0
c) x(2x-1)-(x-2)(2x+1)=0
d) (2x-3)2-4x2=00
e)1 phần 3.x2-3x=0
f) x3-x2-x+1=0
ráng giúp mình nha
\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Tìm x, biết:
a) 7x2 - 28 = 0
b) \(\dfrac{2}{3}\)x(x2 - 4) = 0
c) 2x(3x - 5) - (5 - 3x) = 0
d) (2x - 1)2 - 25 = 0
a) Ta có: \(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)
mà 7>0
nên (x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-2\right\}\)
b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
mà \(\dfrac{2}{3}>0\)
nên x(x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2;2\right\}\)
c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)
\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)
d) Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-2\right\}\)
a,7x2 - 28 = 0
=> 7x2 = 28 => x2 = 4 => x = 2
b,2/3x(x2 - 4) = 0
=>2/3x(x - 2)(x + 2) = 0
=> x ∈ {0 ; 2 ; -2}
c,2x(3x - 5) - (5 - 3x) = 0
= 2x(3x - 5) + (3x - 5)
= (3x - 5)(2x + 1) = 0
=> x ∈ { 5/3 ; -1/2}
d, (2x - 1)2 - 25 = 0
=> (2x - 4)(2x - 6) = 0
=> x ∈ {2 ;3}
a,7x2 - 28 = 0
=> 7x2 = 28 => x2 = 4 => x = 2
b,2/3x(x2 - 4) = 0
=>2/3x(x - 2)(x + 2) = 0
=> x ∈ {0 ; 2 ; -2}
c,2x(3x - 5) - (5 - 3x) = 0
= 2x(3x - 5) + (3x - 5)
= (3x - 5)(2x + 1) = 0
=> x ∈ { 5/3 ; -1/2}
d, (2x - 1)2 - 25 = 0
=> (2x - 4)(2x - 6) = 0
=> x ∈ {2 ;3}
Tìm x biết:
a) 2x2 - 4 = 0
b) (x + 1)2 = 4
c) (2x - 1)2 - 9 = 0
d) x2 - x = 0
a: =>2x^2=4
=>x^2=2
=>\(x=\pm\sqrt{2}\)
b: =>(x+1)^2-4=0
=>(x+1+2)(x+1-2)=0
=>(x+3)(x-1)=0
=>x=1 hoặc x=-3
c: =>(2x-1)^2-3^2=0
=>(2x-1-3)(2x-1+3)=0
=>(2x-4)(2x+2)=0
=>x=2 hoặc x=-1
d: x^2-x=0
=>x(x-1)=0
=>x=0 hoặc x=1
Tìm x,biết:
a)(2x-3)2-49=0
b)2x.(x-5)-7.(5-x)=0
c)x2-3x-10=0
a) \(\Rightarrow\left(2x-3\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, ⇒ (2x - 3)2 = 49
⇒ (2x - 3)2 = \(\left(\pm7\right)^2\)
⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0
⇒ (x - 5).(2x + 7) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c, ⇒ x2 - 5x + 2x - 10 = 0
⇒ (x2 - 5x) + (2x - 10) = 0
⇒ x.(x - 5) +2.(x - 5) = 0
⇒ (x - 5).(x + 2)=0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
Tìm x biết:
a, 16x² – 9(x + 1)²= 0
b, x2 (x – 1) – 4x2 + 8x – 4 = 0
c, x(2x – 3) – 2(3 – 2x) = 0
d, (x – 3)(x² + 3x + 9) – x(x + 2)(x – 2) = 1
e, 4x² + 4x – 6 = 2
f, 2x² + 7x + 3 = 0
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Tìm các số thực x, biết:
a) (2x-3)2-49=0
b) 2x(x-5)-7(5-x)=0
c) x2-3x-10=0
a: \(\left(2x-3\right)^2-49=0\)
\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
a. (2x - 3)2 - 49 = 0
<=> (2x - 3)2 - 72 = 0
<=> (2x - 3 + 7)(2x - 3 - 7) = 0
<=> (2x + 4)(2x - 10) = 0
<=> \(\left[{}\begin{matrix}2x+4=0\\2x-10=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
b. 2x(x - 5) - 7(5 - x) = 0
<=> 2x(x - 5) + 7(x - 5) = 0
<=> (2x + 7)(x - 5) = 0
<=> \(\left[{}\begin{matrix}2x+7=0\\x-5=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
c. x2 - 3x - 10 = 0
<=> x2 - 5x + 2x - 10 = 0
<=> x(x - 5) + 2(x - 5) = 0
<=> (x + 2)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
a, (2x - 3)2 - 49 = 0
(2x - 3)2 - 72 = 0
(2x - 3 + 7)( 2x - 3 - 7) = 0
(2x + 4)( 2x - 10) = 0
=> 2x + 4 = 0 => 2x - 10 = 0
2x = - 4 2x = 10
x = - 2 x = 5