Cho hàm số \(f_{\left(x\right)}=ax^4-bx^2+x+3\)
Biết \(f_2=17\)
Tính \(f_{\left(-2\right)}\)
cho đa thức \(f_{\left(x\right)}=ax^2+bx+c\) ,biết rằng \(29a+2c=3b\) .
Chứng minh rằng : \(f_{\left(2\right)}.f_{\left(-5\right)}\le0\)
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a\cdot2^2+2b+c=4a+2b+c\\f\left(-5\right)=a\cdot\left(-5\right)^2-5b+c=25a-5b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=\left(4a+2b+c\right)\left(25a-5b+c\right)\)
Lại có:\(25a-5b+c=29a+2c-c-4a-5b\)
\(=3b-c-4a-5b=-2b-c-4a=-\left(4a+2b+c\right)\)
\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=-\left(4a+2b+c\right)\left(4a+2b+c\right)\)
\(=-\left(4a+2b+c\right)^2\le0\forall a,b,c\)
=> Q(2)=a2^2+2b+c=4a+2b+c
Q(-1)=a(-1)^2+(-1)b+c=a-b+c
Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c
=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c
Nhầm đây mới là câu trả lời:
Ta có:Q(x)=ax2+bx+x
=>Q(2)=a2^2+2b+c=4a+2b+c
Q(-1)=a(-1)^2+(-1)b+c=a-b+c
Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c
=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c
a) Tìm đa thức \(f_{\left(x\right)}=x^2+ax+b\) , biết khi chia \(f_{\left(x\right)}\) cho \(x+1\) thì dư là \(6\), còn khi chia cho \(x-2\) thì dư là \(3\)
b) Cho đa thức \(f_{\left(x\right)}=x^4-3x^3+bx^2+ax+b\) ; \(g_{\left(x\right)}=x^2-1\)
Tìm các hệ số của \(a;b\) để \(f_{\left(x\right)}\) chia hết cho \(g_{\left(x\right)}\)
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
\(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow\left\{{}\begin{matrix}1^4-3.1^3+b.1^2+a.1+b=0\\\left(-1\right)^4-3.\left(-1\right)^3+b.\left(-1\right)^2+a.\left(-1\right)+b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2b+a=2\\2b-a=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-\dfrac{1}{2}\end{matrix}\right.\)
Câu 1: Tìm a;b để:
\(f_{\left(x\right)}=ax^4+bx^3+1⋮g_{\left(x\right)}=\left(x-1\right)^2\)
Câu 2: Tìm a;b để
\(f_{\left(x\right)}=x^3+ax+b:x+1\text{ };:x-3\text{ }dư-5\)
Cho hàm số: \(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}\). Tìm các số nguyên x, y sao cho:
\(S=f_{\left(1\right)}+f_{\left(2\right)}+f_{\left(3\right)}+...+f_{\left(x\right)}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
AI NHANH MK TICK! CÁM ƠN TRƯỚC!
Câu hỏi của Nguyễn Bá Huy h - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
\(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}\)
\(=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow f\left(1\right)=\frac{1}{1^2}-\frac{1}{2^2}\)
\(f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2}\)
\(f\left(3\right)=\frac{1}{3^2}-\frac{1}{4^2}\)
...
\(f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
Lúc đó: \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}\)
\(-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)
Thay về đầu bài, ta được: \(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow2y\left(x+1\right)+\left(x+1\right)=21\)
\(\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)
\(\Rightarrow\hept{\begin{cases}x+1\\2y+1\end{cases}}\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Lập bảng:
\(x+1\) | \(1\) | \(3\) | \(7\) | \(21\) | \(-1\) | \(-3\) | \(-7\) | \(-21\) |
\(2y+1\) | \(21\) | \(7\) | \(3\) | \(1\) | \(-21\) | \(-7\) | \(-3\) | \(-1\) |
\(x\) | \(0\) | \(2\) | \(6\) | \(20\) | \(-2\) | \(-4\) | \(-8\) | \(-22\) |
\(y\) | \(10\) | \(3\) | \(1\) | \(0\) | \(-11\) | \(-4\) | \(-2\) | \(-1\) |
Mà \(x\ne0\)nên \(\left(x,y\right)\in\left\{\left(2,3\right);\left(6,1\right);\left(20,0\right);\left(-2,-11\right);\left(-4,-4\right);\left(-8,-2\right)\right\}\)\(\left(-22,-1\right)\)
Cho hàm số \(f:Z^+\rightarrow R^+\) thỏa mãn các điều kiện
\(1.f_{\left(x\right)}=0\leftrightarrow x=0\)
\(2.f_{\left(xy\right)}=f_{\left(x\right)}f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
\(3.f_{\left(x+y\right)}=f_{\left(x\right)}+f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
Gọi \(n_o\) là số nguyên dương bé nhất trong các số nguyên dương m thõa mãn điều kiện \(f_{\left(m\right)}>1\). Chứng minh rằng với mọi số nguyên dương n ta đều có bất đẳng thức sau :
\(f_{\left(n\right)}< \dfrac{\left(f_{\left(n_o\right)}\right)^{1+\left[log_{n_o}n\right]}}{f_{\left(n_o\right)}-1}\)
\(\left[a\right]\) là phần nguyên của số thực \(a\)
Tìm a;b để :
a) \(f_{\left(x\right)}=x^3+\:ax^2+2x+b⋮g_{\left(x\right)}=x^2+2x+3\)
\(\text{b) }f_{\left(x\right)}=x^4-3x^3+3x^2+ax+b⋮g_{\left(x\right)}=x^2-3x+4\)
\(\text{c) }x^4-3x^3+bx^2+ax+b⋮x^2-1\)
Yêu cầu: Sử dụng phương pháp hệ số bất định. Tuy nhiên câu c không bắt buộc.
a) Do đa thức bị chia có bậc 3
đa thức chia có bậc 2
nên đa thức thương là nhị thức bậc nhất.
\(\Rightarrow\) Hạng tử bậc nhất: \(x^3:x^2=x\)
\(Đặt\text{ }đa\text{ }thức\text{ }thương\text{ }là:x+c\\ \RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^3\: +ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\\ =x^3+2x^2+3x+cx^2+2cx+3c\\ =x^3+\left(c+2\right)x^2+\left(2c+3\right)x+3c\\ \Rightarrow\left\{{}\begin{matrix}c+2=a\\2c+3=2\\3c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c+2\\c=-\dfrac{1}{2}\\b=3c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=\dfrac{3}{2};b=-\dfrac{3}{2}\)
b) Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là tam thức 2
\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)
\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-3x^3-3cx^2-3dx+4x^2+4cx+4d\\ =x^4+\left(c-3\right)x^3+\left(d-3c+4\right)x^2+\left(4c-3d\right)x+4d\\ \Rightarrow\left\{{}\begin{matrix}c-3=-3\Rightarrow c=0\\d-3c+4=3\\4c-3d=a\\4d=b\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}d-0+4=3\Rightarrow d=-1\\0-3d=a\\4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=3;b=-4\)
c) Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là nhị thức bậc 2
\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)
Đặt đa thức thương là \(x^2+cx+d\)
\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+bx^2+ax+b=\left(x^2-1\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-x^2-cx-d\\ =x^4+cx^3+\left(d-1\right)x^2-cx-d\\ \Rightarrow\left\{{}\begin{matrix}c=-3\\d-1=b\\-c=a\\-d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-3\\b=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}thì\text{ }a=-3;b=-\dfrac{1}{2}\)
Câu a , b bạn Trần Quốc Lộc làm rồi , câu c mk làm cách k phải hệ số bất định cho
c) Do đa thức chia có bậc 4 , đa thức bị chia có bậc 2 . Suy ra thương có bậc 2
Đặt đa thức chia là : f( x )
Gọi thương của phép chia là q( x) , ta có :
f( x ) = ( x2 - 1). q( x) , với mọi x
(=) x4 - 3x3 + bx2 + ax + b = ( x2 - 1). q( x) , với mọi x ( 1)
Chọn các giá trị riêng của x sao cho :
x2 - 1 = 0 (=) x = 1 hoặc x = - 1
* Với x = 1 , ta có :
(1) <=> - 2 + 2b + a = 0 ( 2)
* Với x = - 1 , ta có :
( 1) <=> 4 + 2b - a = 0 ( 3)
Từ ( 2 , 3 ) ta nhận được : a = 3 ; b = \(-\dfrac{1}{2}\)
Vậy , với a = 3 ; b = \(-\dfrac{1}{2}\) thỏa mãn điều kiện đầu bài
Cho hàm số: \(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}\). Tìm các số nguyên x, y sao cho:
\(S=f_{\left(1\right)}+f_{\left(2\right)}+f_{\left(3\right)}+...+f_{\left(x\right)}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
AI NHANH MK TICK! CÁM ƠN TRƯỚC!
Cho đa thức \(f_{\left(x\right)}=2000x^2-bx+1\) . Xác định hệ số \(b\) biết rằng khi chia đa thức \(f_{\left(x\right)}\) cho x-10 và x+10 đều có cùng số dư
cho đa thức \(f_{\left(x\right)}\) bậc 4 và \(f_{\left(x\right)}=Z_{\left[x\right]}\) biết rằng \(f_{\left(x\right)}\)⋮7 với mọi x∈Z.Cmr các hệ số của fx đều chia hết cho 7