Phép nhân và phép chia các đa thức

TL

a) Tìm đa thức \(f_{\left(x\right)}=x^2+ax+b\) , biết khi chia \(f_{\left(x\right)}\) cho \(x+1\) thì dư là \(6\), còn khi chia cho \(x-2\) thì dư là \(3\)

b) Cho đa thức \(f_{\left(x\right)}=x^4-3x^3+bx^2+ax+b\) ; \(g_{\left(x\right)}=x^2-1\)

Tìm các hệ số của \(a;b\) để \(f_{\left(x\right)}\) chia hết cho \(g_{\left(x\right)}\)

H24
15 tháng 10 2017 lúc 10:24

a)ta có:

\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)

tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)

từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

Bình luận (0)
DD
15 tháng 10 2017 lúc 11:02

Câu a :

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

Vậy đa thức \(f\left(x\right)=x^2-2x+3\)

Bình luận (0)
H24
15 tháng 10 2017 lúc 10:28

\(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow\left\{{}\begin{matrix}1^4-3.1^3+b.1^2+a.1+b=0\\\left(-1\right)^4-3.\left(-1\right)^3+b.\left(-1\right)^2+a.\left(-1\right)+b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2b+a=2\\2b-a=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
QN
Xem chi tiết
TH
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết
VL
Xem chi tiết