Nếu 4x-3y=15 thì \(x^2+y^2\ge9\)
chứng minh rằng nếu 4x - 3y = 15 thì x2 + y2 >= 9
Áp dụng bất đẳng thức Bunhiacopski:
\(15=4x-3y\le\sqrt{\left(4^2+3^2\right)\left(x^2+y^2\right)}\)
=> (x2 + y2) >=(15/5)2 = 9
Cho x,,y ϵ Z, chứng minh rằng :
a,Nếu A = 5x+y ⋮ 19 thì B = 4x-3y ⋮ 19 .
b,Nếu C = 4x+3y ⋮13 thì D= 7x+2y ⋮ 13
cho x,y thuộc Z
CMR:
a) Nếu A= 5x+y chia hết cho 19 thì B=4x-3y chia hết cho 19.
b) Nếu C=4x+3y chia hết cho13 thì D=7x+3y chia hết cho 13.
Tìm x, y biết:
a, x+y=15 và 5x=2y
b,x-y=10 và x/y=3/7
c,2x-3y=15 và 4x=3y
d,x+2y=1 và x+3y/x-2y=2/3
a) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) . Đến đấy áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}.2=\frac{30}{7}\) ; \(\Rightarrow y=\frac{15}{7}.5=\frac{75}{7}\)
b) \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{3}=\frac{y}{7}\). Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-3}\)
\(\Rightarrow x=-10\) ; \(y=-\frac{70}{3}\)
c) Sai đề vì 2x = 3y => 2x - 3y = 0 mà giả thiết lại đưa ra 2x - 3y = 15 => mâu thuẫn
d) \(\frac{x+3y}{x-2y}=\frac{2}{3}\Leftrightarrow3\left(x+3y\right)=2\left(x-2y\right)\)
\(\Leftrightarrow3x+9y=2x-4y\Leftrightarrow x=-13y\)
Thay x = -13y vào x+2y = 1 được :
x + 2y = 1 => (-13y) + 2y = 1 => -11y = 1 => y = -1/11
=> x = -1/11 . -13 = 13/11
Câu b) mình có nhầm xíu : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-4}=-\frac{5}{2}\)
\(\Rightarrow x=-\frac{15}{2};y=-\frac{35}{2}\)
Cho x,y thuộc z,CMR:
a, Nếu A=5x+y chia hết cho 19 thì B =4x - 3y chia hết cho 19
b,Nếu C=4x+3y chia hết cho 13 thì D=7x +2y chia hết cho 13
Cho x,y ∈ z .cmr
Nếu A=5x+y ⋮19 thì B=4x-3y⋮19
A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (đpcm)
Cho x,y thuộc Z . CMR :
a) Nếu A= 5x +y chia hết cho 9 thì B = 4x -3y cũng chia hết cho 9
b) Nếu C = 4x + 3y chia hết cho 13 thì D = 7x +2y cũng chia hết cho 13
Cho x , y thuộc z . Chứng tỏ rằng
a, Nếu M = 5x + y chia hết 19 thì N = 4x - 3y chia hết 19
b, Nếu P = 4x + 3y chia hết 13 thì Q = 7x + 2y chia hết 13
Cho x , y > 0 và \(\frac{4}{x^2}+\frac{5}{y^2}\ge9\) . Tìm min K = \(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)