Những câu hỏi liên quan
H24
Xem chi tiết
GC
29 tháng 8 2017 lúc 18:38

Giả sử a,b,c đều không chia hết cho 3 thì  phải chia 3 dư 1

thay vào  chia 3 dư 2 còn  chia 3 dư 1 (loại)

Do đó a,b,c phải tồn tại một số chia hết cho 3 ,  

Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5

Rồi suy ra abc chia hêt cho 3.4.5 = 60

Bình luận (0)
NH
16 tháng 1 2019 lúc 20:29

Giả sử a,b,c đều không chia hết cho 3 thì  phải chia 3 dư 1

thay vào  chia 3 dư 2 còn  chia 3 dư 1 (loại)

Do đó a,b,c phải tồn tại một số chia hết cho 3 ,  

Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5

 suy ra abc chia hêt cho 3.4.5 = 60

Bình luận (0)
TT
Xem chi tiết
AH
10 tháng 2 2018 lúc 10:57

Lời giải:

Ta biết rằng một số chính phương choa $3$ có dư $0$ hoặc $1$

Giả sử trong ba số $a,b,c$ không có số nào chia hết cho $3$

Khi đó: \(a^2\equiv b^2\equiv c^2\equiv 1\pmod 3\)

Mà \(a^2+b^2=c^2\Rightarrow c^2=a^2+b^2\equiv 1+1\equiv 2\pmod 3\) (mâu thuẫn)

Do đó luôn tồn tại ít nhất một trong ba số chia hết cho $3$

\(\Rightarrow abc\vdots 3\)

Mặt khác: Một số chính phương khi chia $5$ có thể dư $0,1$ hoặc $4$

Nếu $a,b$ có ít nhất một số chia hết cho $5$ thì $abc$ chia hết cho $5$

Nếu $a,b$ không có số nào chia hết cho $5$ thì \(a^2,b^2\equiv 1,4\pmod 5\)

Xét các TH sau:
+) \(a^2\equiv 1, b^2\equiv 4\pmod 5\) hoặc ngược lại

\(\Rightarrow c^2=a^2+b^2\equiv 5\equiv 0\pmod 5\Rightarrow c^2\vdots 5\Rightarrow c\vdots 5\)

\(\Rightarrow abc\vdots 5\)

+) \(a^2\equiv b^2\equiv 1\pmod 5\Rightarrow c^2\equiv 2\not\equiv 0,1,4\pmod 5\) (vô lý)

+) \(a^2\equiv b^2\equiv 4\pmod 5\Rightarrow c^2\equiv 8\equiv 3\not\equiv 0,1,4\pmod 5\) (vô lý)

Vậy \(abc\vdots 5\)

Lại xét:

\(a^2+b^2=c^2\Rightarrow (a+b)^2-2ab=c^2\)

\(\Leftrightarrow 2ab=(a+b-c)(a+b+c)\)

Vì $a+b-c,a+b+c$ có cùng tính chẵn lẻ mà tích của chúng lại là số chẵn nên \(a+b-c, a+b+c\) chẵn

\(\Rightarrow 2ab=(a+b-c)(a+b+c)\vdots 4\Rightarrow ab\vdots 2\)

Đến đây ta thấy:

-Nếu \(a,b\vdots 2\Rightarrow ab\vdots 4\rightarrow abc\vdots 4\)

-Nếu $a,b$ có một số chẵn một số lẻ. Không mất tổng quát giả sử $a$ chẵn $b$ lẻ

\(a^2=c^2-b^2\)

$c$ chẵn thì $ac$ chia hết cho $4$ suy ra $abc$ chia hết cho $4$

$c$ lẻ:

Xét số chính phương lẻ có dạng

\(x^2=(4k\pm 1)^2\Rightarrow x^2-1=16k^2\pm 8k+1-1=16k^2\pm 8k\vdots 8\)

Do đó ta suy ra scp lẻ luôn chia 8 dư 1

\(\Rightarrow b^2\equiv c^2\equiv 1\pmod 8\Rightarrow a^2=c^2-b^2\vdots 8\)

\(\Rightarrow a\vdots 4\Rightarrow abc\vdots 4\)

Vậy trong mọi TH có thể $abc$ đều chia hết cho $4$

Ta thấy $abc$ chia hết cho $3,4,5$ mà $3,4,5$ đôi một nguyên tố cùng nhau nên $abc$ chia hết cho $60$

Bình luận (0)
TL
Xem chi tiết
NH
3 tháng 8 2015 lúc 9:17

ko phải dạng vừa đâu!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
LD
Xem chi tiết
LP
Xem chi tiết
NQ
Xem chi tiết
ND
1 tháng 2 2021 lúc 20:05

Dễ chứng minh được với 1 số chính phương khi chia cho 7 ta chỉ có các khả năng dư: 0 , 1 , 2 , 4

Khi đó \(a^2+b^2\)  chia 7 sẽ có các khả năng dư sau: 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 7

Mà theo đề bài \(a^2+b^2\) chia hết cho 7 nên sẽ chỉ duy nhất 1 khả năng là \(\hept{\begin{cases}a^2⋮7\\b^2⋮7\end{cases}}\)

Vì 7 là số nguyên tố => a và b đều chia hết cho 7

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
HU
Xem chi tiết
NM
5 tháng 11 2019 lúc 15:24

a+b+c=a+2b chia hết cho 7 (b=c)

abc=100a+10b+c=100a+11b=98a+7b+2(a+2b)

Ta thấy 98a+7b = 7(14a+b) chia hết cho 7

mà a+2b chia hết cho 7 => 2(a+2b) chia hết cho 7

=> abc chia hết cho 7

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
H24
4 tháng 4 2015 lúc 20:54

abc = 100a + 10b + c = 98a + 2a + 7b + 2b + b + 2c - c = (98a + 7b) + (2a + 2b + 2c) + (b - c) = 7(14a + b) + 2(a + b + c) + (b - c) chia hết cho 7.

Mà 7(14a + b) chia hết cho 7 và 2(a + b + c) chia hết cho 7 

\(\Rightarrow\)b - c chia hết cho 7 

Mà 0\(\le\)b - c < 7 

Vậy b - c = 0

Bình luận (0)
TD
Xem chi tiết
TP
29 tháng 6 2018 lúc 16:18

giả thiết a, b, c nguyên; a² = b²+c²

* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3
=> abc chia hết cho 3 (1)

* ta biết số n² chia 4 dư 0 hoặc dư 1
nếu n chẳn => n² chia 4 dư 0
nếu n lẻ: n = 2k+1 => (2k+1)² = 4k²+4k+1 chia 4 dư 1

từ a² = b²+c² => b² và c² khi chia 4 không thể cùng dư 1
vì nếu b² và c² chia 4 đều dư 1 => b²+c² = a² chia 4 dư 2 trái lí luận trên
=> hoặc b² hoặc c² (hoặc cả 2) chia 4 dư 0, chẳn hạn b² chia 4 dư 0
+ nếu c² chia 4 dư 0 => b và c đều chia hết cho 2 => abc chia hết cho 4
+ nếu c² chia 4 dư 1 => a² = b²+c² chia 4 dư 1 => a, c là 2 số lẻ
a = 2n+1 ; c = 2m+1; có: b² = a²-c² = (a-c)(a+c) = (2n-2m)(2n+2m+2)
=> b² = 4(n-m)(n+m+1) (**)
ta lại thấy nếu m, n cùng chẳn hoặc cùng lẻ => n-m chẳn
nếu m, n có 1 chẳn, 1 lẻ => m+n+1 chẳn
=> (m-n)(m+n+1) chia hết cho 2 => b² = 4(m-n)(m+n+1) chia hết cho 8
=> b chia hết cho 4 => abc chia hết cho 4
Tóm lại abc luôn chia hết cho 4 (2)

* lập luận tương tự thì thấy số n² chia cho 5 chỉ có thể dư 0, 1, 4
+ b² và c² chia 5 không thể cùng dư 1 hoặc 4
vì nếu cùng dư 1 => b²+c² = a² chia 5 dư 2
nếu cùng dư là 4 thì b²+c² = a² chia 5 dư 3
đều vô lí do a² chia 5 chỉ có thể dư 0, 1 hoặc 4
+ b² chia 5 dư 1 và c² chia 5 dư 4 (hoặc ngược lại)
=> b²+c² = a² chia 5 dư 0 => a chia hết cho 5 (do 5 nguyên tố)
+ nếu b² hoặc c² chia 5 dư 0 => b (hoặc c ) chia hết cho 5
Tóm lại vẫn có abc chia hết cho 5 (3)

Từ (1), (2, (3) => abc chia hết cho 3, 4, 5
=> abc chia hết cho [3,4,5] = 60

Bình luận (0)