Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=2015. chứng minh rằng tích abc chia hết cho 3 nhưng không chia hết cho 12
Cho a, b là các số tự nhiên thỏa mãn điều kiện: \(a^2+b^2⋮7\).
Chứng minh rằng cả a và b đều chia hết cho 7.
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
a) Cho hai số dương thỏa mãn điều kiện a - b = a3 + b3. Chứng minh rằng a2 + b2 < 1.
b) Cho a, b, c, d thuộc Z thỏa mãn a3 + b3 = 2(c3 - 8d3). Chứng minh rằng a + b + c + d chia hết cho 3.
Cho ba số nguyên a ; b ;c thỏa mãn điều kiện a + b + c chia hết cho 6 . Chứng minh rằng tổng a3 + b3 + c3 cũng chia hết cho 6
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Cho các số nguyên dương thõa mãn điều kiện p2 + a2 = b2. Chứng minh rằng nếu p là một số nguyên tố lớn hơn 3 thì a chia hết cho 12 và 2(p + a + 1) là một số chính phương.