Những câu hỏi liên quan
NM
Xem chi tiết
NT
7 tháng 8 2018 lúc 17:19

Hãy tích cho tui đi

vì ai tích cho tui thì người đó thông minh

Bình luận (0)
KT
7 tháng 8 2018 lúc 19:44

ĐK:  \(-2\le x\le2\)

\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)

<=>  \(3\left(\sqrt{2+x}-2\sqrt{2-x}\right)=10-3x-4\sqrt{4-x^2}\)

Đặt:  \(t=\sqrt{2+x}-2\sqrt{2-x}\)  =>   \(t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó pt trở thành:

\(3t=t^2\)

<=> \(t^2-3t=0\)

<=> \(t\left(t-3\right)=0\)

<=> \(\orbr{\begin{cases}t=0\\t=3\end{cases}}\)

đến đây bn tự giải nốt nhé

Bình luận (0)
LJ
Xem chi tiết
NT
30 tháng 1 2024 lúc 14:36

\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)

=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)

=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)

=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)

=>-x+1=0

=>x=1

Bình luận (0)
H24
Xem chi tiết
DH
Xem chi tiết
NM
27 tháng 11 2021 lúc 22:24

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

Bình luận (0)
NT
Xem chi tiết
TA
Xem chi tiết
KS
Xem chi tiết
AH
30 tháng 10 2020 lúc 20:14

Lời giải:

ĐK: $x\geq 0$

Đặt $\sqrt{x+1}=a; \sqrt{x}=b$. ĐK $a,b\geq 0$ thì ta có:

$a-b-ab=a^2-2b^2$

$\Leftrightarrow a-b=a^2+ab-2b^2=(a-b)(a+2b)$

$\Leftrightarrow (a-b)(a+2b-1)=0$

$\Leftrightarrow a=b$ hoặc $a+2b=1$

Nếu $a=b\Rightarrow a^2=b^2\Leftrightarrow x+1=x$ (vô lý)

Nếu $a+2b=1$

$\Leftrightarrow \sqrt{x+1}-1+2\sqrt{x}=0$

$\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+2\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}(\frac{\sqrt{x}}{\sqrt{x+1}+1}+2)=0$

Dễ thấy biểu thức trong ngoặc lớn hơn $0$ nên \sqrt{x}=0$

$\Leftrightarrow x=0$

Vậy.......

Bình luận (0)
 Khách vãng lai đã xóa
VM
Xem chi tiết
HA
15 tháng 11 2015 lúc 21:26

Bình phương hai vế đi bạn :))
Bài này bình phương được đấy ^^
Không liên quan nhưng tick cho mình nhé ^^

Bình luận (0)
H24
15 tháng 11 2015 lúc 21:37

kết quả : x = 0; x = 9 nha

Bình luận (0)
H24
Xem chi tiết
HN
17 tháng 9 2016 lúc 16:40

ĐKXĐ : \(1\le x\le3\)

\(x-\sqrt{x-1}-3=0\)

\(\Leftrightarrow\left(x-1\right)-\sqrt{x-1}-2=0\)

Đặt \(t=\sqrt{x-1},t\ge0\), suy ra pt trên trở thành \(t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{cases}}\)

Với t = 2 suy ra x = 5

Bình luận (0)