Phân tích thành nhân tử x4+2x3+7x2-8x+12
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Phân tích đa thức thành nhân tử:
a) x 4 - 6 x 3 + 12 x 2 - 14x + 3.
b) x 4 + 6 x 3 + 7 x 2 -6x + l.
a) ( x 2 – 4x + 1)( x 2 – 2x + 3).
b) ( x 2 + 5x – 1)( x 2 + x – 1).
phân tích thành nhân tử
a) x6 – x4 + 2x3 + 2x2
x⁶ - x⁴ + 2x³ + 2x²
= x²(x⁴ - x² + 2x + 2)
= x²[(x⁴ - x²) + (2x + 2)]
= x²[x²(x² - 1) +2(x + 1)]
= x²[x²(x - 1)(x + 1) + 2(x + 1)]
= x²(x + 1)[x²(x - 1) + 2]
= x²(x + 1)(x³ - x² + 2)
= x²(x + 1)(x³ + x² - 2x² - 2x + 2x + 2)
= x²(x + 1)[(x³ + x²) - (2x² + 2x) + (2x + 2)]
= x²(x + 1)[x²(x + 1) - 2x(x + 1) + 2(x + 1)]
= x²(x + 1)²(x² - 2x + 2)
phân tích đa thức thành nhân tử
x4-2x3+2x-1
x⁴ - 2x³ + 2x - 1
= (x⁴ - 1) - (2x³ - 2x)
= (x² - 1)(x² + 1) - 2x(x² - 1)
= (x² - 1)(x² + 1 - 2x)
= (x - 1)(x + 1)(x² - 2x + 1)
= (x - 1)(x + 1)(x - 1)²
= (x - 1)³(x + 1)
phân tích đa thức: x4 + 2x3 + 4x2 + 3x + 2 thành nhân tử
Ta có:
\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)
\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)
\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)
Phân tích đa thức thành nhân tử
x4+2x3-4x-4
Định lý Bezout
\(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2-2x+2\right)\)
Phân tích các đa thức sau thành nhân tử: x 4 - 2 x 3 - 2 x 2 - 2 x - 3
x 4 - 2 x 3 - 2 x 2 - 2 x - 3 = ( x 4 − 1 ) − ( 2 x 3 + 2 x 2 ) − ( 2 x + 2 ) = ( x 2 + 1 ) ( x 2 − 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x 2 + 1 ) ( x − 1 ) ( x + 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 x 2 – 2 = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 ( x 2 + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x – 1 − 2 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 3 )
x^4 - 2x^3 - 2x^2 - 2x - 3
= x^4 - 1 - 2x^3 - 2x^2 - 2x -2
= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 )
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ]
= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 )
= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 )
= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 )
Phân tích các đa thức sau thành nhân tử:
d ) x 4 + 2 x 3 - 4 x – 4
d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)
= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)
phân tích đa thức sau thành nhân tử
e) x4 - 2x3 + x2 f) 27y3 - x3
e, x4 - 2x3 + x2
= x2( x2 - 2x + 1)
= x2 (x - 1)2
e: \(x^4-2x^3+x^2\)
\(=x^2\cdot x^2-x^2\cdot2x+x^2\cdot1\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
f: \(27y^3-x^3\)
\(=\left(3y\right)^3-x^3\)
\(=\left(3y-x\right)\left(9y^2+3xy+x^2\right)\)
\(e)x^4-2x^4+x^2 =x^2.x^2-2x.x^2+x^2+1 =(x^2)(x^2-2x+1) =x^2(x-1)^2 \)
\(f)27y^3-x^3 =(3y)^3-x^3 =(3y-3)(9y^2+3xy+x^2)\)
Phần tự luận (8 điểm)
Phân tích thành nhân tử
a ) x 6 – x 4 + 2 x 3 + 2 x 2 b ) 4 x 4 + y 4
a) x6 – x4 + 2x3 + 2x2
= x2(x4 – x2 + 2x + 2)
= x2[x2(x2 – 1) + 2(x + 1)]
= x2. [x2.(x -1).(x + 1) + 2(x+ 1)]
= x2 (x+ 1).[x2(x- 1)+ 2]
= x2(x + 1)(x3 – x2 + 2)
= x2(x + 1)[(x3 + 1) – (x2 – 1)]
= x2(x + 1).[(x + 1).(x2 – x + 1) - (x - 1).(x + 1)]
= x2(x + 1)(x + 1)( x2 – x + 1 – x + 1)
= x2(x + 1)2(x2 – 2x + 2).
b) 4x4 + y4 = 4x4 + 4x2y2 + y4 - 4x2y2
= (2x2 + y2)2 - (2xy)2
= (2x2 + y2 + 2xy)(2x2 + y2 - 2xy)
1. Phân tích thành nhân tử
A) x4 + 2x3 + x2
B) x3 - x + 3x2y + 3xy2 + y3 - y
C) 5x2 - 10xy +5y2 - 20z2
2. Phân tích thành nhân tử
A) x2 + 5x -6
B) 5x2 + 5xy - x - y
C) 7x - 6x2 - 2
3.Phân tích thành nhân tử
A) x2 + 4 + 3
B) 2x2 + 3x -5
C) 16x - 5x2 - 3
4. Tìm x, bt
A) 5x ( x - 1 ) = x -1
B) 2( x + 5 ) -x2 - 5x = 0
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)