Giải và biện luận phương trình: m2( x-1)=mx-1 theo tham số
Giải và biện luận bất phương trình theo tham số m.
m x - m 2 > 2 x - 4
m x - m 2 > 2 x - 4 ⇔ (m - 2)x > (m - 2)(m + 2)
Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;
Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;
Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.
Giải và biện luận phương trình sau theo tham số m :
mx-3c+m-2=2m+1
Cho phương trình (m+2)x2−2(m−1)x+3−m=0 (1); với m là tham số thực
1) Giải và biện luận phương trình đã cho theo tham số m
2) Tìm m để phương (1) có hai nghiệm thỏa mãn tổng hai nghiệm bằng tích hai nghiệm.
1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)
\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)
\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)
\(=4m^2-8m+4+4m^2-4m-24\)
\(=-12m-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-12m-20>0\)
\(\Leftrightarrow-12m>20\)
hay \(m< \dfrac{-5}{3}\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow-12m-20=0\)
\(\Leftrightarrow-12m=20\)
hay \(m=\dfrac{-5}{3}\)
Để phương trình vô nghiệm thì Δ<0
\(\Leftrightarrow-12m-20< 0\)
\(\Leftrightarrow-12m< 20\)
hay \(m>\dfrac{-5}{3}\)
2: ĐKXĐ: \(m\ne-2\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)
Ta có: \(x_1+x_2=x_1x_2\)
\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)
Suy ra: 2m-2=3-m
\(\Leftrightarrow2m+m=3+2\)
\(\Leftrightarrow3m=5\)
hay \(m=\dfrac{5}{3}\)(thỏa ĐK)
giải và biện luận hệ phương trình sau theo tham số m :
\(\hept{\begin{cases}mx+y=3m-1\\x+my=m+1\end{cases}}\)
Cho hệ phương trình \(|^{mx+2y=1}_{3x+\left(m+1\right)y=-1}\) (với m là tham số)
a) Giải hệ phương trình với m = 3.
b) Giải và biện luận hệ phương trình theo m.
c) Tìm m để hệ phương trình có nghiệm là số nguyên.
Cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=1\\mx+y=2\end{matrix}\right.\)
giải và biện luận hệ phương trình với m là tham số
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
Cho HPT:
-2mx+y=5
mx+3y=1
a) giải hệ phương trình khi m=1
b) giải và biện luận theo tham số m
c) tìm m để x-y=2
a) Thay m = 1 vào hệ ta được hê phương trình:
-2x + y = 5
x + 3y = 1
=> -2x+ y = 5
2x + 6y = 2
Cộng từng vế của pt ta được:
7y = 7 => y = 1 => x = -2
Vậy (x;y) = (-2;1)
b) Từ PT thứ nhất trong hệ => y = 2mx + 5. Thế vapf PT thứ hai ta được: mx + 3. (2mx +5) = 1
<=> 7mx = -14 <=> mx = -2 (*)
+) Nếu m \(\ne\) 0 <=> (*) có nghiệm là x = -2/m => y = 1
Khi đó, hệ có nghiệm là (-2/m; 1)
+) Nếu m = 0 thì (*) <=> 0 = -2 Vô lí => (*) vô nghiệm <=> Hệ vô nghiệm
Vậy.................
c) Với m \(\ne\) 0 thì hệ có nghiệm x = -2/m và y = 1
Để x - y = 2 <=>( -2/m )- 1 = 2 <=> (-2/m) = 3 <=> m = -2/3 ( Thỏa mãn)
Vậy...................
Giải và biện luận theo tham số m để hệ phương trình với hai ẩn x va y sau:
\(\hept{\begin{cases}mx+y=1\\3x-\left(m+1\right)y=-3\end{cases}}\)
\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).
Từ phương trình (1) suy ra \(y=1-mx\)
Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^3x-mx+m=3x+2\)
\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)
Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)
Xét tiếp tục với \(m\ne0\) nhé bạn.
Thôi chết giải nhầm.
Giải
Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)
Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^2x-mx+m=3x+2\)
Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Với \(m\ne0\) .....giải tiếp ....
^^
giải và biện luận hệ phương trình theo tham số m:
{mx-y=2m và 4x-my=6+m
Giải giúp em với ạ:
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
a, giải hệ phương trình khi m = √2
b, giải và biện luận hệ phương trình theo m
Cô làm câu b thôi nhé :)
Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)
Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)
Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.
Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)
Từ đó : \(x=\frac{8-m}{2+m}\)
Kết luận:
+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
+ m = - 2, hệ phương trình vô nghiệm.
+ \(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)
Chúc em học tập tốt :)
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui