Những câu hỏi liên quan
HL
Xem chi tiết
AT
31 tháng 5 2021 lúc 16:15

1) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) mà \(\angle ECB=90\Rightarrow BCDE\) nội tiếp

2) Vì \(\left\{{}\begin{matrix}EF\bot AB\\AF\bot EB\end{matrix}\right.\Rightarrow F\) là trực tâm tam giác EAB \(\Rightarrow BF\bot AE\)

mà \(BD\bot AE\left(\angle BDA=90\right)\Rightarrow B,F,D\) thẳng hàng

Ta có: \(\angle FNB+\angle FCB=90+90=180\Rightarrow FNBC\) nội tiếp

Xét \(\Delta AFC\) và \(\Delta ABN:\) Ta có: \(\left\{{}\begin{matrix}\angle ACF=\angle ANB=90\\\angle NABchung\end{matrix}\right.\)

\(\Rightarrow\Delta AFC\sim\Delta ABN\left(g-g\right)\Rightarrow\dfrac{AF}{AC}=\dfrac{AB}{AN}\Rightarrow AF.AN=AB.AC\)

Tương tự \(\Rightarrow BF.BD=BC.BA\)

\(\Rightarrow AF.AN+BF.BD=AB.AC+AB.BC=AB^2=4R^2\)

3) Gọi G là giao điểm của (AEF) và AB

Ta có: \(\angle FGB=\angle AEF\left(AEFGnt\right)=\angle DBA\left(BCDEnt\right)\Rightarrow\Delta GFB\) cân tại F có \(FC\bot GB\Rightarrow CB=CG\)

mà C,B cố định \(\Rightarrow G\) cố định

Vì AEFG nội tiếp \(\Rightarrow I\in\) trung trực AG mà A,G cố định \(\Rightarrow\) đpcm

Bình luận (1)
H24
Xem chi tiết
AT
1 tháng 7 2021 lúc 9:00

a) Vì AB là đường kính \(\Rightarrow\angle ANB=90\)

\(\Rightarrow\angle FNB+\angle FCB=90+90=180\Rightarrow BCFN\) nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) 

Xét \(\Delta ACE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle ADB=\angle ACE=90\\\angle BAEchung\end{matrix}\right.\)

\(\Rightarrow\Delta ACE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AB}\Rightarrow AD.AE=AB.AC\)

undefined

Bình luận (0)
Xem chi tiết
TH
25 tháng 5 2021 lúc 23:01

1: Ta có \(\widehat{CDE}=\widehat{CNE}=90^o\) nên tứ giác CDNE nội tiếp đường tròn đường kính CE.

2: Xét tam giác \(BKD\) và tam giác \(EKM\) có: \(\widehat{BKD}=\widehat{EKM}\) (đối đỉnh), \(\widehat{BDK}=\widehat{EMK}\) (= \(90^o\))

Do đó \(\Delta BKD\sim\Delta EKM(g.g)\).

Suy ra \(\dfrac{KB}{KD}=\dfrac{KE}{KM}\Rightarrow KB.KM=KE.KD\).

Do K là trực tâm của tam giác BCE nên C, K, N thẳng hàng.

3: Ta có \(\widehat{FNK}=\dfrac{1}{2}sđ\stackrel\frown{NC}=\widehat{NBC}=90^o-\widehat{BED}=\widehat{NKF}\). Suy ra tam giác NKF cân tại F nên FN = FK. Lại có tam giác ENK vuông tại N nên F là trung điểm của EK.

Vậy ta có đpcm.

Bình luận (0)
NQ
Xem chi tiết
NT
19 tháng 4 2023 lúc 9:15

a: góc BNA=1/2*180=90 độ

góc FNB+góc FCB=180 độ

=>FCBN nội tiếp

b: góc ADB=1/2*180=90 độ

Xét ΔADB vuông tạiD và ΔACE vuông tại C có

góc A chung

=>ΔADB đồng dạng với ΔACE
=>AD/AC=AB/AE

=>AC*AB=AD*AE

c: Xét ΔEAB có

EC,AN là đường cao

EC cắt AN tại F

=>F là trực tâm

=>BF vuông góc AE

mà BD vuông góc AE

nên B,F,D thẳng hàng

Bình luận (0)
DN
Xem chi tiết
NT
8 tháng 4 2023 lúc 22:37

A,D,N,B cùng thuộc (O)

nên ADNB nội tiếp

=>góc ADN+góc ABN=180 độ

=>góc EDN=góc EBA

Bình luận (0)
DN
Xem chi tiết
NT
9 tháng 4 2023 lúc 0:29

A,D,N,B cùng thuộc (O)

nên ADNB nội tiếp

=>góc ADN+góc ABN=180 độ

=>góc EDN=góc EBA

Bình luận (0)
CC
Xem chi tiết
LN
Xem chi tiết
DN
12 tháng 4 2022 lúc 0:16

Tham khảo 

https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/

Bình luận (1)
NK
12 tháng 4 2022 lúc 0:20

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ AMP^=90°

PC ⊥ AC (gt) ⇒ ACP^=90° Hay BCP^=90°

Xét tứ giác ACPM có: AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

BMA^=BCP^=90° 

PBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ CPA^=CMA^ (góc nội tiếp chắn CA⏜)

Hay CPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà AMC^+AMN^=180° (hai góc kề bù)

⇒ AQN^=CMA^ Hay PQN^=CMA^

Mà CPQ^=CMA^ (cmt)

⇒ CPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính 

Bình luận (1)
NK
12 tháng 4 2022 lúc 0:21

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°

PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°

Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

ˆBMA=ˆBCP=90°BMA^=BCP^=90° 

ˆPBCPBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)

Hay ˆCPQ=ˆCMACPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)

⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^

Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)

⇒ ˆCPQ=ˆPQNCPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3

Bình luận (3)
LD
Xem chi tiết
ND
7 tháng 7 2018 lúc 23:17

B C O A D d M K E N I H F P d'

1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900

=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:

^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).

2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900

=> BM vuông góc CE. Xét \(\Delta\)BEC:

BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC

=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).

3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.

Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)

Tương tự: ^NBK = ^NDK     (2)

Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN

Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)

Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)

Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH

=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF

Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)

Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:

^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)

=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)

Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)

Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)

\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900

=> ^DBF + ^DCH = 900 => CH vuông góc BF.

Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB

=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900

=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)

=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP

Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800

=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn

=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.

Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB

=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)

=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP

Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP

=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)

I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d

OC vuông góc d => OC // IF (8)

Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))

=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)

=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)

Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.

Bình luận (0)
H24
22 tháng 5 2018 lúc 21:57
bạn giải ra chưa? giúp mình câu 3 với
Bình luận (0)
NA
23 tháng 1 2019 lúc 13:06

???

Bình luận (0)
HN
Xem chi tiết
HN
4 tháng 5 2022 lúc 22:12

gấp

Bình luận (0)
DL
4 tháng 5 2022 lúc 22:13

undefined

Bình luận (0)
DL
4 tháng 5 2022 lúc 22:43

a) dễ thấy \(\widehat{AMC}\) \(=\) \(90^o\) xét (O) có đường kính \(AB\) \(\Rightarrow\) \(\widehat{ANB}\) là góc nội tiếp chắn nửa đường tròn 

\(\Rightarrow\) \(\widehat{ANB}\) \(=90^o\) hay \(\widehat{ANC}\) \(=90^o\) . tứ giác \(ANCM\) có :

\(\widehat{AMC}\) \(+\) \(\widehat{ANC}\) \(=90^o+90^o=180^o\) \(\Rightarrow\) tứ giác \(ANCM\)  nội tiếp 4 điểm \(A,N,C,M\) cùng \(\in\) 1 đường tròn

b) vì \(AB\) là đường kính của (O) \(\Rightarrow\) \(\stackrel\frown{AB}\) \(=180^o\)

mà \(I\) là điểm chính giữa của \(\stackrel\frown{AB}\) 

\(\Rightarrow\) \(A=\dfrac{\stackrel\frown{AB}}{2}\) \(=\dfrac{180^o}{2}=90^o\)

có \(\widehat{ANI}\) là góc nội tiếp chắn \(\stackrel\frown{IA}\) 

\(\Rightarrow\) \(\widehat{ANI}\) \(=\dfrac{1}{2}\) ; \(A=\dfrac{1}{2}.90^o\) \(=45^o\) hay \(\widehat{ANM}\) \(=45^o\) . mặt khác ,   tứ giác \(ANCM\) nội tiếp \(\Rightarrow\) \(\widehat{ANM}\) \(=\) \(\widehat{ACM}\) mà \(\widehat{ANM}\) \(=45^o\) \(\Leftrightarrow\) \(\widehat{ACM}\) \(=45^o\) lại có \(\Delta ACM\) cuông tại \(M\) \(\Rightarrow\) \(\Delta ACM\) vuông cân tại \(M\) 

\(\Rightarrow\) \(AM=CM\)

c) kẻ đường kính \(ID\) của (O) :

có : \(MN=IN-IM\) mà \(IN\) là dây của (O) nên hiển nhiên \(IN\le ID\) nhưng do \(IN\) không qua (O) nên \(IN< ID\) (1) , dễ dàng chứng minh \(IO\perp AB\) tại \(O\) 

do vậy : \(\Delta IOM\) vuông tại (O) \(\Rightarrow\) \(IM>IO\) ( không xảy ra dấu " = " vì \(M\) không trùng với \(O\) ) 

\(\Leftrightarrow\) \(-IM< -IO\) (2)

từ (1) và (2)

\(\Rightarrow\) \(IN-IM< ID-IO\) \(\Leftrightarrow\) \(MN< OD\) \(=R\) 

vậy ta có \(đpcm\)

 

Bình luận (1)