Những câu hỏi liên quan
HP
Xem chi tiết
H24
20 tháng 11 2018 lúc 8:39

\(x+y\ge2\sqrt{xy}\) (1)

\(9+xy\ge2\sqrt{9xy}\) (2)

Từ (2) suy ra \(\frac{12xy}{9+xy}\le\frac{12}{2\sqrt{9xy}}=\frac{6}{\sqrt{9xy}}=\frac{6}{3\sqrt{xy}}=\frac{2}{\sqrt{xy}}\)

Ta sẽ chứng minh \(2\sqrt{xy}\ge\frac{2}{\sqrt{xy}}\).Thật vậy,ta có:

Điều cần chứng minh tương đương với: \(2\sqrt{xy}.\sqrt{xy}\ge2\)

hay \(2xy\ge2\) (luôn đúng vì x,y dương)

Suy ra đpcm

P/s: Tuy nhiên ở bài này dấu "=" xảy ra. =,=

Bình luận (0)
H24
20 tháng 11 2018 lúc 8:45

À nhầm xíu, bắt đầu lại chỗ: "Ta sẽ chứng minh ..."

Ta sẽ chứng minh \(\frac{2\sqrt{xy}}{1}\ge\frac{2}{\sqrt{xy}}\)( \(2\sqrt{xy}=\frac{2\sqrt{xy}}{1}\).Thật vậy,ta có:

Điều cần chứng minh tương đương với: \(\frac{2\sqrt{xy}.\sqrt{xy}}{\sqrt{xy}}\ge\frac{2}{\sqrt{xy}}\)

Hay \(\frac{2xy}{\sqrt{xy}}\ge\frac{2}{\sqrt{xy}}\) - luôn đúng (do x,y dương)

P/s: tuy nhiên dấu "=" không xảy ra ở bài này =((

Bình luận (0)
AN
20 tháng 11 2018 lúc 9:08

Ta có:

\(x+y\ge2\sqrt{xy}\)

Ta cần chứng minh:

\(2\sqrt{xy}\ge\frac{12xy}{9+xy}\)

Đặt \(\sqrt{xy}=a\)

\(\Rightarrow2a\ge\frac{12a^2}{9+a^2}\)

\(\Leftrightarrow a\left(a-3\right)^2\ge0\) (đúng)

Vậy ta có điều phải chứng minh.

Dấu = xảy ra khi \(a=3\)hay \(x=y=3\)

Bình luận (0)
NC
Xem chi tiết
TH
Xem chi tiết
BB
Xem chi tiết
NL
28 tháng 2 2021 lúc 16:52

\(\left(1+x\right)^2=\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2\le\left(1+xy\right)\left(1+\dfrac{x}{y}\right)=\dfrac{\left(1+xy\right)\left(x+y\right)}{y}\)

\(\Rightarrow\dfrac{1}{\left(1+x\right)^2}\ge\dfrac{y}{\left(1+xy\right)\left(x+y\right)}\)

Tương tự ta có: \(\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x}{\left(1+xy\right)\left(x+y\right)}\)

Cộng vế với vế: 

\(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x+y}{\left(1+xy\right)\left(x+y\right)}=\dfrac{1}{1+xy}\)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (0)
H24
Xem chi tiết
DL
9 tháng 1 2018 lúc 21:26

Bài này cũng dễ mà:

Áp dụng BĐT Cô-si, ta có:

\(y+z+1\ge3\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)

\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)

\(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)

Áp dụng BĐT Cauchy -Schwaz:

\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Mà:

\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)

\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)

Áp dụng BĐT Bunhicopski:

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)

\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1

Bình luận (1)
H24
9 tháng 1 2018 lúc 20:35

@Lightning Farron vào thể hiện đẳng cấp đi anh zai :))

Bình luận (0)
LF
9 tháng 1 2018 lúc 21:58

Xem câu hỏi

Bình luận (3)
AP
Xem chi tiết
AH
25 tháng 1 2018 lúc 13:30

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)

\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)

Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)

Hoàn toàn tương tự:

\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)

Cộng theo vế các BĐT đã thu được ta có:

\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=3\)

Bình luận (0)
LL
Xem chi tiết
HN
25 tháng 8 2017 lúc 15:48

Gọi cái thiệt gớm đó là P

Ta có:

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64y}+\dfrac{1+y}{64x}\ge3\sqrt[3]{\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}.\dfrac{1+x}{64y}.\dfrac{1+y}{64x}}=\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{64x}-\dfrac{1}{64y}-\dfrac{1}{32}\left(1\right)\)

Tương tự ta cũng có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{64y}-\dfrac{1}{64z}-\dfrac{1}{32}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{64z}-\dfrac{1}{64x}-\dfrac{1}{32}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta được

\(P\ge\dfrac{3}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

Bình luận (1)
HN
26 tháng 8 2017 lúc 8:49

Đặt cái ban đầu là P

Ta có: \(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta lại có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

Bình luận (0)
LL
Xem chi tiết
LF
10 tháng 6 2017 lúc 22:25

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)

\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)

Tương tự cho 2 BĐT còn lại:

\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Bình luận (15)
HN
11 tháng 6 2017 lúc 0:07

Cách khác:

\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)

\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(x=y=z=1\)

Bình luận (0)
DT
10 tháng 6 2017 lúc 22:16

có vẻ khó :v

Bình luận (6)
DT
Xem chi tiết
MP
23 tháng 8 2018 lúc 6:45

ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{\sqrt{xy}}-\dfrac{1}{\sqrt{yz}}-\dfrac{1}{\sqrt{zx}}\ge0\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right) ^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\forall x;y;z>0\)

\(\Rightarrow\left(đpcm\right)\)

Bình luận (1)
DH
25 tháng 8 2018 lúc 19:22

áp dụng BĐT côsi ta có

\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{xy}}=\dfrac{2}{\sqrt{xy}}\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{\dfrac{1}{yz}}=\dfrac{2}{\sqrt{yz}}\)

\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\)

=> \(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

=> đpcm

Bình luận (2)