Chương I - Căn bậc hai. Căn bậc ba

DT

CMR với x,y,z dương, ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

Help me ! T.T

MP
23 tháng 8 2018 lúc 6:45

ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{\sqrt{xy}}-\dfrac{1}{\sqrt{yz}}-\dfrac{1}{\sqrt{zx}}\ge0\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right) ^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\forall x;y;z>0\)

\(\Rightarrow\left(đpcm\right)\)

Bình luận (1)
DH
25 tháng 8 2018 lúc 19:22

áp dụng BĐT côsi ta có

\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{xy}}=\dfrac{2}{\sqrt{xy}}\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{\dfrac{1}{yz}}=\dfrac{2}{\sqrt{yz}}\)

\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\)

=> \(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

=> đpcm

Bình luận (2)

Các câu hỏi tương tự
NT
Xem chi tiết
VC
Xem chi tiết
PL
Xem chi tiết
BL
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết