Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
NT
16 tháng 11 2021 lúc 17:07

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

Bình luận (0)
NT
16 tháng 11 2021 lúc 17:07

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết
CD
13 tháng 10 2018 lúc 22:49

ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)

=>\(3>=3\sqrt[3]{xyz}\)

=>\(1>=\sqrt[3]{xyz}\)

=>\(1>=xyz\)

dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1

vay x=y=z=1

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
MP
25 tháng 9 2017 lúc 6:05

ta có : \(x+3y=xy+3\Leftrightarrow x+3y-xy-3\Leftrightarrow-xy+3y+x-3\)

\(\Leftrightarrow-y\left(x-3\right)+\left(x-3\right)=\left(1-y\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\) vậy \(y=1;x=3\)

Bình luận (0)
GL
Xem chi tiết
TL
28 tháng 4 2020 lúc 19:25

Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)

\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)

\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)

Áp dụng BĐT Cosi ta có:

\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)

\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
DD
25 tháng 9 2017 lúc 19:49

\(x+3y=xy+3\)

\(\Leftrightarrow x+3y-xy-3=0\)

\(\Leftrightarrow x-xy+3y-3=0\)

\(\Leftrightarrow x\left(1-y\right)-3\left(1-y\right)=0\)

\(\Leftrightarrow\left(1-y\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)

Vậy phương trình trên bằng nhau xảy ra khi

\(x=3\) \(y=1\)

Bình luận (0)
PB
Xem chi tiết
TP
19 tháng 1 2020 lúc 18:07

Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.

Bình luận (0)
 Khách vãng lai đã xóa
DP
19 tháng 1 2020 lúc 18:59

có đúng đề không bạn

Bình luận (0)
 Khách vãng lai đã xóa