so sánh:a,3^99 và 11^21 b,Cho A=3^1+3^2+...+3^100.CMR:A chia hết cho 40
bài 1:cho a chia hết cho m;b chia hết cho m và a+b+c không chia hết cho m ;chứng minh c không chia hết cho m
bài 2:so sánh
a)21^15 và 27^5*49^8
b)3^99 và 11^21
bài 3:chứng minh
A=1+3+3^2+3^3+..........+3^11 chia hết cho13
1. So Sánh:a) 1/3+1/3^2+1/3^3+...+1/3^99 và 1/2
b)(-11)^20 và (-1111)^10
2. Chứng tỏ: 6^8-18^4 chia hết cho cả 3 và 5
3.a) Cho x(x-y)=3/10, y(x-y)=-3/50. Tìm x;y
b)|x-3/2|+|2y+3/4|<hoặc=0
Cho A=1+3+3^2+.....+3^11
CMR:a,A chia hết cho 13
b,A chia hết cho 40
CỨU MÌN VỚI !!!!!!
Lê Thanh Sắt bạn vào câu hỏi tương tự hoặc vào lick này nha !
Lick : Câu hỏi của Nguyễn Văn Cường - Toán lớp 6 - Học toán với OnlineMath
bạn ơi mình nghĩ đề sai , hoặc thiếu vì mình nghỉ tất cả đều phải mủ chẳn
tu oanh mình thiếu :A=1+3+3^2+...+3^11
Bài 1: Chứng minh B = \(3^{21}+3^{22}+3^{23}+.........+3^{29}\) chia hết cho 13
Bài 2: So sánh \(\frac{100}{11^{11}}+\frac{100}{11^{12}}\)và \(\frac{99}{11^{11}}+\frac{101}{11^{12}}\)
3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*3^21+13*3^24+13*3^27=13*(3^21+3^24+3^27)chia hết cho 13
Giải nghĩa ^:mũ
*:nhân
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Bài 1 : Chứng minh rằng :
a, ( 5 + 5^2 + 5^3 + .... + 5^100 ) chia hết cho 10
b, (1 + 3 + 3^2 + .... + 3^99 ) chia hết cho 40
c, ( 19^5^2003 + 8^2004 + 5.7^2003 ) chia hết cho 10
d, ( 2^2.n - 1 ) chia hết cho 5
e, ( 19^2005 + 11^2004 ) chia hết cho 10
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
CMR:a)29+299 chia hết cho 100
b)270+370 chia hết cho 13
b: \(2^{70}+3^{70}=4^{35}+9^{35}=\left(4+9\right)\cdot A⋮13\)
a)1/9 * 3^4 * 3^x =3^7
b) so sánh 3^35 và 11^21
c) cho bt 3+2^2+2^3+.....2^99
CM a chia hết cho 15
d)tìm x để a+ 1= 16^(5x)
e)tìm chử số tận cùng của a
#)Giải :
a)\(\frac{1}{9}\times3^4\times3^x=3^7\)
\(\Leftrightarrow\frac{1}{9}\times81\times3^x=3^7\)
\(\Leftrightarrow9\times3^x=3^7\)
\(\Leftrightarrow3^2\times3^x=3^7\)
\(\Leftrightarrow3^x=3^5\Rightarrow x=5\)
D=1+3 +3 mũ 2+3 mũ 3+...+3 mũ 11
a) d chia hết 13
b) d chia hết 40
E, =3+3 mũ 3+3 mũ 5+....+3 mũ 1991
a) E chia hết 13
b) E chia hết 41
Bài 2
CMR
1 ab-ba chia hết 9
2 abc - cba chia hết 99
3 Nếu abcd chia hết 99 thì ab -cd chia hết 99
4 Nếu abcd chia hết 101 thì ab-cd =0
5 Nếu ab+ cd +eg chia hết cho 11 thì abcdeg chia hết cho 11
\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)
\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)
Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41
\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)
\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)
Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)
Mà \(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)
\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)
Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)
Giúp em nhanh lên với ạ
Mn ơi giúp em nhanh nhé em sắp đi học rồi