chứng tỏ rằng BCNN (2n + 1,3n + 2) = (2n+1) . (3n+2)
chứng tỏ rằng
BCNN(2n + 1,3n +2) = (2n + 1) . (3n + 2)
chứng tỏ rằng BCNN (2n+1,3n+2) = (2n+1).(3n+2). CÁC BẠN GIÚP MÌNH NHÉ
chứng tỏ rằng:BCNN(2n + 5,3n + 7) = (2n + 5).(3n + 7)
BCNN(2n + 1,3n + 2) = (2n + 1).(3n + 2)
chứng minh với mọi số tự nhiên n thì:
a) BCNN (2n+1,3n+2) = (2n+1) (3n+2)
b) tìm ƯCLN(2n+1,9n+6)
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
Chung minh voi moi so tu nhien thi:
a)BCNN(2n+1,3n+2)=(2n+1).(3n+2)
b)Tim UC(2n+1,9n+6)
Chứng minh rằng 2n+1 và 3n+1 là 2 SNT cùng nhau.Đề bài dễ nhưng em có 2 cách làm ai chọn hộ em nha:
C1:Gọi (2n+1,3n+1) là d (d thuộc N*)
Ta có:2n+1 chia hết cho d
3n+1 chia hết cho d
\(\Rightarrow\)3n+1 - 2n+1 chia hết cho d hay 1 chia hết cho d
C2:Gọi (2n+1,3n+1) là d (d thuộc N*)
Ta có:2n+1 chia hết cho d\(\Rightarrow\)3.(2n+1)chia hết cho d
3n+1 chia hết cho d \(\Rightarrow\)2.(3n+1) chia hết cho d
\(\Rightarrow\)3.(2n+1) - 2.(3n+1) chia hết cho d hay 1 chia hết cho d.
Ai chọn họ em nhanh nhất em cho 1 tick!!!!!!!!
Bạn chọn cách 2 đi, vì cách 2 là cách thông dụng và dễ hiểu nhất !!!
a, Với n là số nguyên dương ,chứng tỏ rằng:
3n+2 và 2n+1 là các số nguyên tố cùng nhau.
b, Tìm ƯCLN và BCNN của 2 số : n và n+2 (n thuộc Z*)
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
Chứng tỏ A = ( 3n+1 + 3n+3 + 2n+2 + 2n+3) ⋮ 6
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2 (1)
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3
= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3
⇒ A ⋮ 6
\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)
\(=3^{n+1}.10+4.2^n.3\)
\(=3^n.6.5+2^n.2.6⋮6\)
\(\Rightarrow A⋮6\left(đpcm\right)\)
A= (3^n) * 3 + (3^n)*(3^3)+(2^n)*(2^2)+(2^n)*(2^3)
A= (3^n)*(3+9)+(2^n)*(4+8)
A= 12*[(3^n)+(2^n)]
do 12 chia hết cho 6 nên A chia hết cho 6 ( đpcm)
Chứng tỏ rằng:2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow a=1\)
Vậy: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau