Những câu hỏi liên quan
H24
Xem chi tiết
NT
23 tháng 11 2023 lúc 21:29

Sửa đề: K là điểm đối xứng của M qua AC

a: M đối xứng H qua AB

=>AB là đường trung trực của MH

=>AB vuông góc MH tại trung điểm của MH

=>AB vuông góc MH tại E và E là trung điểm của MH

M đối xứng K qua AC

=>AC là đường trung trực của MK

=>AC vuông góc với MK tại trung điểm của MK

=>AC vuông góc với MK tại F và F là trung điểm của MK

ME\(\perp\)AB

AC\(\perp\)AB

Do đó: ME//AC

MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

Xét tứ giác AMBH có

E là trung điểm của AB và MH

Do đó: AMBH là hình bình hành

Hình bình hành AMBH có MH\(\perp\)AB

nên AMBH là hình thoi

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

b: AMBH là hình thoi

=>AB là phân giác của góc MAH

=>\(\widehat{MAH}=2\cdot\widehat{BAM}\)

AMCK là hình thoi

=>AC là phân giác của góc MAK

=>\(\widehat{MAK}=2\cdot\widehat{MAC}\)

\(\widehat{MAH}+\widehat{MAK}=\widehat{KAH}\)

=>\(\widehat{KAH}=2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)\)

=>\(\widehat{KAH}=2\cdot90^0=180^0\)

Do đó: K,A,H thẳng hàng

mà AH=AK(=AM)

nên A là trung điểm của HK

c: Để hình chữ nhật AEMF trở thành hình vuông thì AE=AF

mà \(AE=\dfrac{AB}{2};AF=\dfrac{AC}{2}\)

nên AB=AC

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 7 2018 lúc 5:16

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

Bình luận (0)
TN
Xem chi tiết
LH
26 tháng 11 2016 lúc 20:58

a,

AEMF là hcn

AMBH là hthoi

AMCK là hthoi

b,cm thế nào nhỉ :V, khó nói ra quá, đại lạo thế này

cm h,a,k thẳng hàng (dựa vào hthoi)

cm ha=hk (=am)

rồi xong

c, cái này thì ko biết nói thật nè :V, chỉ có thể nói nó là tam giác vuông cân thôi

Bình luận (0)
TN
Xem chi tiết
LH
26 tháng 11 2016 lúc 20:59

AEMF là hcn

AMBH là hthoi

AMCK là hthoi

b,cm thế nào nhỉ :V, khó nói ra quá, đại lạo thế này

cm h,a,k thẳng hàng (dựa vào hthoi)

cm ha=hk (=am)

rồi xong

c, cái này thì ko biết nói thật nè :V, chỉ có thể nói nó là tam giác vuông cân thôi

Bình luận (0)
NL
Xem chi tiết
CH
24 tháng 6 2016 lúc 11:31

Hình vẽ đơn giản nên em có thể tự vẽ nhé.

a. Tứ giác AEMF là hình chữ nhật, AMBH hình thoi, AMCK là hình thoi.

b. Ta thấy AH = AM = AK. Lại có góc HAM+MAK = 2(BAM+MAC) = 2.90 = 180 độ. Vậy K đối xứng với H qua A.

c. Để AEMH là hình vuông thì ME = MF hay AC= AB. Vậy tam giác giác vuông ABC phải thêm điều kiện cân thì thì AEMH là hình vuông.

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2022 lúc 20:50

a: M đối xứng với H qua AB

nên MH vuông góc vơi AB tại E và E là trung điểm của MN

M đối xứng với K qua AC

nên MK vuông góc với CA tại F và F là trung điểm của MK

Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

Xét ΔBAC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AMBH có

E là trung điểm chung của AB và MH

MA=MB

DO đó: AMBH là hình thoi

=>ABlà phân giác của góc MAH(1)

Xét tứ giác AMCK có

F là trug điểm chung của AC và MK

MA=MC

Do đó: AMCK là hình thoi

=>AC là phân giác của góc MAK(2)

Từ (1) và (2) suy ra góc KAH=2*90=180 độ

=>K,A,H thẳng hàng

mà AH=AK

nên H đối xứng với K qua A

c: Để AEMF là hình vuông thì AE=AF

=>AB=AC

Bình luận (0)
NA
Xem chi tiết
NT
9 tháng 7 2023 lúc 14:50

a: góc ADM=góc AHM=góc DAH=90 độ

=>ADMH là hình chữ nhật

b: Xét ΔACB có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét tứ giác AMBE có

D là trung điểm chung của AB và ME

=>AMBE là hình bình hành

mà MA=MB

nên AMBE là hình thoi

c:ADMH là hcn

=>I là trung điểm chung của AM và DH

Xét tứ giác ACME có

ME//AC

ME=AC

=>ACME là hbh

mà I là trung điểm của AM

nên i là trung điểm của CE

=>C,I,E thẳng hàng

Bình luận (0)
HA
Xem chi tiết
QV
Xem chi tiết
AS
Xem chi tiết