Những câu hỏi liên quan
KN
Xem chi tiết
HT
Xem chi tiết
NH
3 tháng 8 2023 lúc 15:14

Các số được điền vào các ô theo thứ tự từ trái sang phải là:

-1; - \(\dfrac{1}{3}\);  \(\dfrac{2}{3}\)\(\dfrac{4}{3}\)

Bình luận (0)
TT
Xem chi tiết
TT
6 tháng 8 2021 lúc 11:33

Mình sẽ tặng coin cho người làm đầu tiên nha

 

Bình luận (0)
NT
6 tháng 8 2021 lúc 12:03

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)

mà góc đối diện với cạnh AB là \(\widehat{ACB}\)

và góc đối diện với cạnh AC là \(\widehat{ABC}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

Xét ΔABC có 

HB là hình chiếu của AB trên BC

HC là hình chiếu của AC trên BC

AB<AC

Do đó: HB<HC

c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có 

CA chung

AB=AD(gt)

Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔCBD có CB=CD(cmt)

nên ΔCBD cân tại C(Định nghĩa tam giác cân)

Bình luận (0)
NT
6 tháng 8 2021 lúc 12:07

d: Xét ΔCBD có 

CA là đường cao ứng với cạnh DB

BK là đường cao ứng với cạnh CD

CA cắt BK tại F

Do đó: F là trực tâm của ΔCBD(Tính chất ba đường cao của tam giác)

Suy ra: DF\(\perp\)BC

Ta có: DF\(\perp\)BC(cmt)

AH\(\perp\)BC(gt)

Do đó: DF//AH(Định lí 1 từ vuông góc tới song song)

Xét ΔFAB vuông tại A và ΔFAD vuông tại A có 

FA chung

AB=AD

Do đó: ΔFAB=ΔFAD

Suy ra: FB=FD(hai cạnh tương ứng

Xét ΔFBD có FB=FD

nên ΔFBD cân tại F

e: Xét ΔFBD có 

A là trung điểm của BD

AE//DF

Do đó: E là trung điểm của BF

Bình luận (0)
PL
Xem chi tiết
KT
Xem chi tiết
TM
31 tháng 12 2021 lúc 7:33

giúp cái j vậy?

Bình luận (0)
 Khách vãng lai đã xóa
ST
31 tháng 12 2021 lúc 7:39

Giúp gì ?

Bình luận (0)
 Khách vãng lai đã xóa
NN
31 tháng 12 2021 lúc 7:45

giúp gif đề đâu

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NH
3 tháng 3 2023 lúc 22:34

em ơi chưa có bài em nhé, em chưa tải bài lên lám sao mình giúp được 

Bình luận (0)
NT
3 tháng 3 2023 lúc 22:37

Dạ đề đây ạ loading...  

Bình luận (0)
NT
3 tháng 3 2023 lúc 22:47

Dạ đề đây ạloading...  

Bình luận (0)
HT
Xem chi tiết
AH
2 tháng 1 2024 lúc 17:04

Câu 8:

a. Với $x,y$ là số nguyên thì $x, y-3$ cũng là số nguyên. Mà $x(y-3)=15$ nên ta có các TH:

TH1: $x=1, y-3=15\Rightarrow x=1; y=18$ (tm)

TH2: $x=-1, y-3=-15\Rightarrow x=-1; y=-12$ (tm)

TH3: $x=15; y-3=1\Rightarrow x=15; y=4$ (tm)

TH4: $x=-15; y-3=-1\Rightarrow x=-15; y=2$ (tm)

TH5: $x=3, y-3=5\Rightarrow x=3; y=8$ (tm)

TH6: $x=-3; y-3=-5\Rightarrow x=-3; y=-2$ (tm)

TH7: $x=5; y-3=3\Rightarrow x=5; y=6$ (tm)

TH8: $x=-5; y-3=-3\Rightarrow x=-5; y=0$ (tm)

Bình luận (0)
AH
2 tháng 1 2024 lúc 17:06

Câu 8:

b. 

$xy-2y+3(x-2)=7$

$\Rightarrow y(x-2)+3(x-2)=7$

$\Rightarrow (x-2)(y+3)=7$

Do $x,y$ nguyên nên $x-2, y+3$ nguyên. Mà tích của chúng bằng $7$ nên ta có các TH sau:

TH1: $x-2=1, y+3=7\Rightarrow x=3; y=4$ (tm)

TH2: $x-2=-1; y+3=-7\Rightarrow x=1; y=-10$ (tm)

TH3: $x-2=7, y+3=1\Rightarrow x=9; y=-2$ (tm)

TH4: $x-2=-7; y+3=-1\Rightarrow x=-5; y=-4$ (tm)

Bình luận (0)
AH
2 tháng 1 2024 lúc 17:09

Câu 8:

c. 

$xy-3x+y=15$

$\Rightarrow x(y-3)+(y-3)=12$

$\Rightarrow (x+1)(y-3)=12$

Do $x,y$ nguyên nên $x+1, y-3$ nguyên. Mà $(x+1)(y-3)=12$ nên ta xét các TH sau:

TH1: $x+1=1, y-3=12\Rightarrow x=0; y=15$ (tm)

TH2: $x+1=-1; y-3=-12\Rightarrow x=-2; y=-9$ (tm)

TH3: $x+1=12; y-3=1\Rightarrow x=11; y=4$ (tm)

TH4: $x+1=-12; y-3=-1\Rightarrow x=-13; y=2$ (tm)

TH5: $x+1=2; y-3=6\Rightarrow x=1; y=9$ (tm)

TH6: $x+1=-2; y-3=-6\Rightarrow x=-3; y=-3$ (tm)

TH7: $x+1=6; y-3=2\Rightarrow x=5; y=5$ (tm)

TH8: $x+1=-6; y-3=-2\Rightarrow x=-7; y=1$ (tm)

TH9: $x+1=3; y-3=4\Rightarrow x=2; y=7$ (tm)

TH10: $x+1=-3; y-3=-4\Rightarrow x=-4; y=-1$ (tm)

TH11: $x+1=4, y-3=3\Rightarrow x=3; y=6$ (tm)

TH12: $x+1=-4; y-3=-3\Rightarrow x=-5; y=0$ (tm)

 

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 11 2021 lúc 21:54

Bài 4:

a: a\(\perp\)c

b\(\perp\)c

Do đó: a//b

Bình luận (0)
PB
Xem chi tiết
NL
5 tháng 7 2021 lúc 22:25

- Xét : \(x^2+8x-20\le0\)

\(\Rightarrow-10\le x\le2\)

\(x>0\)

\(\Rightarrow0< x\le2\)

- Xét  \(x^2-2\left(m+3\right)x+m^2-2m< 0\)

Có : \(\Delta^,=b^{,2}-ac=\left(m+3\right)^2-\left(m^2-2m\right)\)

\(=m^2+6m+9-m^2+2m=8m+9\)

- Để bất phương trình có nghiệm

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{9}{8}\)

=> Bất phương trình có nghiệm \(S=\left(x_1;x_2\right)\)

\(0< x\le2\)

\(\Rightarrow0< x_1< x_2\le2\)

\(TH1:x=2\)

\(\Rightarrow4-4\left(m+3\right)+m^2-2m< 0\)

\(\Rightarrow3-\sqrt{17}< m< 3+\sqrt{17}\)

\(TH2:0< x_1< x_2< 2\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-2m>0\\m^2-6m-8>0\\0< 2\left(m+3\right)< 2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\\\left[{}\begin{matrix}m>3+\sqrt{17}\\m< 3-\sqrt{17}\end{matrix}\right.\\-3< m< -2\end{matrix}\right.\)

Vậy \(3-\sqrt{7}< m< 3+\sqrt{7}\)


 

Bình luận (4)
NL
6 tháng 7 2021 lúc 23:17

Từ pt đầu \(\Rightarrow-10\le x\le2\) (1)

Để BPT chứa m có nghiệm thì \(\Delta'>0\Rightarrow m...\) (2)

Gọi 2 nghiệm của pt chứa m là \(x_1;x_2\Rightarrow\) miền nghiệm của BPT dưới là \(D=\left(x_1;x_2\right)\)

Do (1) chỉ chứa 2 số nguyên dương là 1 và 2, nên để hệ có nghiệm nguyên dương thì D cần chứa ít nhất 1 trong 2 giá trị 1 hoặc 2

\(\Leftrightarrow\left[{}\begin{matrix}x_1< 1< x_2\\x_1< 2< x_2\end{matrix}\right.\) (các trường hợp trùng lặp 2 điều kiện ví dụ \(x_1< 1< 2< x_2\) không thành vấn đề vì cuối cùng ta cũng hợp nghiệm)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(1\right)< 0\\f\left(2\right)< 0\end{matrix}\right.\) (3) với \(f\left(x\right)=x^2-2\left(m+3\right)x+m^2-2m\)

Lấy giao nghiệm của (2) và (3) sẽ được khoảng m cần tìm

Bình luận (0)
PB
Xem chi tiết
NL
6 tháng 7 2021 lúc 23:04

Nếu \(y\le0\Rightarrow\left(y-4\right)^2\ge16>9\left(ktm\right)\Rightarrow y>0\)

Nếu \(x\ge0\Rightarrow\left(x+5\right)^2\ge25>9\left(ktm\right)\Rightarrow x< 0\)

Đặt \(\left\{{}\begin{matrix}-x=a>0\\y=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-5\right)^2+\left(b-4\right)^2\le9\\3a+b\ge14\end{matrix}\right.\)

Ta có:

\(14^2\le\left(3a+b\right)^2\le\left(3^2+1\right)\left(a^2+b^2\right)\Rightarrow a^2+b^2\ge\dfrac{196}{10}=\dfrac{98}{5}\)

\(P_{min}=\dfrac{98}{5}\) khi \(\left(a;b\right)=\left(\dfrac{21}{5};\dfrac{7}{5}\right)\) hay \(\left(x;y\right)=\left(-\dfrac{21}{5};\dfrac{7}{3}\right)\)

Lại có:

\(\left(a-5\right)^2+\left(b-4\right)^2\le9\Leftrightarrow a^2+b^2\le10a+8b-32\le\sqrt{\left(10^2+8^2\right)\left(a^2+b^2\right)}-32\)

\(\Rightarrow P\le2\sqrt{41}\sqrt{P}-32\Leftrightarrow P-2\sqrt{41}\sqrt{P}+32\le0\)

\(\Rightarrow\left(\sqrt{P}-3-\sqrt{41}\right)\left(\sqrt{P}-3+\sqrt{41}\right)\le0\) (1)

Do \(P\ge\dfrac{98}{5}\Rightarrow\sqrt{P}-3+\sqrt{41}>0\)

Nên (1) tương đương: \(\sqrt{P}-3-\sqrt{41}\le0\Rightarrow P\le50+6\sqrt{41}\)

\(P_{max}=50+6\sqrt{41}\) khi \(\left(a;b\right)=\left(5+\dfrac{15}{\sqrt{41}};4+\dfrac{12}{\sqrt{41}}\right)\) 

Bình luận (0)