Những câu hỏi liên quan
TV
Xem chi tiết
NM
13 tháng 12 2021 lúc 15:50

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Bình luận (1)
DQ
Xem chi tiết
NT
30 tháng 11 2021 lúc 21:45

2: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Bình luận (0)
PC
Xem chi tiết
NT
10 tháng 2 2016 lúc 10:12

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

Bình luận (0)
NN
24 tháng 3 2021 lúc 21:10

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bình luận (0)
 Khách vãng lai đã xóa
TN
28 tháng 3 2021 lúc 21:52

cũng dễ thôi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H9
27 tháng 7 2023 lúc 7:53

1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)

2) \(2x+3y=180\) mà \(x=y\)

Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)

Vậy \(x=y=36\)

3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)

4) \(3x+5y=13\) mà \(y=2x\) ta có:

\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)

\(y=2x=2\cdot1=2\)

Các câu còn lại bạn làm tương tự

Bình luận (0)
IS
Xem chi tiết
LA
Xem chi tiết
PN
Xem chi tiết
XX
Xem chi tiết
NL
12 tháng 4 2021 lúc 0:32

Có thể tìm được min của P chứ không thể tính ra được giá trị cụ thể của P (biểu thức P vẫn phụ thuộc x;y, cụ thể sau khi rút gọn \(P=2\left(x+y\right)-1\))

Bình luận (1)
NL
12 tháng 4 2021 lúc 0:42

\(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\Leftrightarrow1+\dfrac{x}{1-x}+1+\dfrac{y}{1-y}=3\)

\(\Leftrightarrow3=\dfrac{1}{1-x}+\dfrac{1}{1-y}\ge\dfrac{4}{2-\left(x+y\right)}\)

\(\Leftrightarrow2-\left(x+y\right)\ge\dfrac{4}{3}\Rightarrow x+y\le\dfrac{2}{3}< 1\)

Cũng từ giả thiết:

\(\dfrac{x\left(1-y\right)+y\left(1-x\right)}{\left(1-x\right)\left(1-y\right)}=1\Leftrightarrow x+y-2xy=1-x-y+xy\)

\(\Leftrightarrow3xy=2\left(x+y\right)-1\)

Do đó:

\(P=x+y+\sqrt{\left(x+y\right)^2-3xy}=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)

\(P=x+y+\sqrt{\left(1-x-y\right)^2}=x+y+1-x-y=1\)

À tính được P, nãy xác định ngược dấu.

Bình luận (0)
CT
Xem chi tiết