Những câu hỏi liên quan
NL
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 7 2018 lúc 8:04

Đáp án A

Phương pháp giải:

Biến đổi công thức lượng giác, đưa phương trình bài cho về dạng phương trình cơ bản, kết hợp với điều kiện nghiệm để tìm giá trị của tham số m

Lời giải:

Bình luận (0)
JP
Xem chi tiết
H24
7 tháng 9 2023 lúc 21:20

B

Bình luận (1)
PB
Xem chi tiết
CT
4 tháng 11 2017 lúc 17:57

Đáp án là C

phương trình đã cho vô nghiệm khi  m > 1

Bình luận (0)
NT
Xem chi tiết
ND
28 tháng 9 2020 lúc 15:53

Em vui lòng đăng bài đúng box!

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
NL
20 tháng 12 2020 lúc 23:48

Đặt \(t=tan\dfrac{x}{2}\Rightarrow\left\{{}\begin{matrix}t\in\left[0;1\right]\\sinx=\dfrac{2t}{1+t^2}\\cosx=\dfrac{1-t^2}{1+t^2}\end{matrix}\right.\)

Pt trở thành: \(\dfrac{m.2t}{1+t^2}+\dfrac{1-t^2}{1+t^2}=1\)

\(\Leftrightarrow2mt+1-t^2=1+t^2\)

\(\Leftrightarrow2mt-2t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=m\end{matrix}\right.\)

\(\Rightarrow\) Để pt có 2 nghiệm thuộc đoạn đã cho thì \(0< m\le1\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2018 lúc 15:51

Bình luận (0)
H24
Xem chi tiết
TV
Xem chi tiết
H24
4 tháng 3 2023 lúc 22:00

a)Với `m=2` ta có phương trình:

`x^2-7x+2.2+8=0`

`<=>x^2-7x+4+8=0`

`<=>x^2-7x+12=0`

`<=>x^2-3x-4x+12=0`

`<=>(x-3)(x-4)=0`

`<=>[(x=3),(x=4):}`

Vậy với `m=2` thì pt có 2 nghiệm phân biệt là 3 và 4.

`b)` Phương trình có 2 nghiệm `x_1,x_2`

`<=>\Delta>=0`

`<=>7^2-4(2m+8)>=0`

`<=>49-8m-32>=0`

`<=>17>=8m`

`<=>m<=17/8`

Vậy với `m<=17/8` thì pt có 2 nghiệm `x_1,x_2.`

Bình luận (0)
AH
4 tháng 3 2023 lúc 22:02

Lời giải:
a. Khi $m=2$ thì pt trở thành:
$x^2-7x+12=0$

$\Leftrightarrow (x-3)(x-4)=0$

$\Leftrightarrow x-3=0$ hoặc $x-4=0$

$\Leftrightarrow x=3$ hoặc $x=4$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=49-4(2m+8)\geq 0$

$\Leftrightarrow m\leq \frac{17}{8}$

Bình luận (0)
BF
4 tháng 3 2023 lúc 22:07

a) Thay `m = 2` vào phương trình, ta được: 

`x^2 - 7x + 2.2 + 8 = 0`

`<=> x^2 - 7x + 12 = 0`

`<=> x^2 - 3x - 4x + 12 = 0`

`<=> (x^2 - 3x) - (4x - 12) = 0`

`<=> (x-4)(x-3) = 0`

`<=> x - 4 = 0` hoặc `x - 3 = 0`

`<=> x = 4` hoặc `x = 3`

Vậy `m = 2` khi `x = 4` hoặc `x = 3`

`b) x^2 - 7x + 2m + 8 = 0`

`(a = 1; b = -7; c = 2m+8)`

`Δ = b^2 - 4ac = 7^2 - 4 . 1 . (2m+8) = 49 - 8m - 32 = 17  - 8m`

Để phương trình có 2 nghiệm thì `Δ >= 0 <=> 17  - 8m >= 0 <=> 8m <=17 <=> m <= 17/8`

Vậy `m <= 17/8` thì phương trình luôn có `2` nghiệm

Bình luận (0)