CMR nếu 1/a +1/b +1/c = 1/(a+b+c) thì 1/a^2013 + 1/b^2013 + 1/c^2013=1/(a^2013+b^2013+c^2013)
CMR: Nếu a, b,c là 3 số thỏa mãn: \(a+b+c=2013\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2013}\) thì 1 trong 3 số phải có 1 số bằng 2013
ĐKXĐ: \(a,b,c\ne0\)
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)
\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)
\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)
\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)
\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Mà \(a+b+c=2013\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)
CMR nếu a,b,c là 3 số thõ mãn a+b+c=2013 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2013}\) thì 1 trong 3 số đó phải bằng 2013
Bạn nhân a+b+c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lại với nhau rồi trừ 1 ở mỗi vế, phân tích mẫu ra sẽ đc(a+b)(b+c)(c+a)=0
Nhân các vế a +b +c và
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
~Study well~ :)
Cho 1/a + 1/b + 1/c = 1/a+b+c
CMR : 1/a^2013 + 1/b^2013 + 1/c^2013 = 1/a^2013+b^2013+c^2013
1/a + 1/b + 1/c = 1/a+b+c
=> ( ab + bc + ca ) x ( a + b +c ) = abc
=> ( ab + bc + ca ) x ( a + b ) + ( abc + bcc + cca - abc ) = 0
=> ( ab + bc + ca ) x ( a + b ) + c2 x ( a + b ) = 0
=> ( a + b ) x ( a + c ) x ( b + c ) = 0
=> trong đó a , b đối nhau khi đó vì n lẻ nên
1/a2013 + 1/b2013 + 1/c2013 = 1/c2013 = 1/c2013 + b 2013 + c2013
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
CMR \(\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{1}{a^{2013}+b^{2013}+c^{2013}}\)
\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=\(\frac{1}{a+b+c}\)
=> ( ab + bc + ca ) x ( a + b +c ) = abc
=> ( ab + bc + ca ) x ( a + b ) + ( abc + bcc + cca - abc ) = 0
=> ( ab + bc + ca ) x ( a + b ) + c2 x ( a + b ) = 0
=> ( a + b ) x ( a + c ) x ( b + c ) = 0
=> trong đó a , b đối nhau khi đó vì n lẻ nên
1/a2013 + 1/b2013 + 1/c2013 = 1/c2013 = 1/c2013 + b 2013 + c2013
cho a+b+c=2013 1/a+1/b +1/c =2013 cmr ít nhất 1 trong 3 số a,b,c bằng 2013
Chứng minh rằng nếu a, b, c là ba số thỏa mãn a + b +c = 2013 và 1/a + 1/b + 1/c = 1/2013 thì phải có một trong ba số bằng 2013
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).CMR: \(\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{1}{a^{2013}+b^{2013}+c^{2013}}\)
GIÚP VS MÌNH ĐANG CẦN GẤP
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b\right)+abc+bc^2+ac^2-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[\left(a+c\right)b+c\left(a+c\right)\right]\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Còn lại bn tự làm tiếp nhé!
cho a2(b+c)+b2(c+a)+c2(a+b)+2abc=0
a2013+b2013+c2013=1
tính Q=1/a2013+1/b2013+1/c2013
Cho các số a,b,c thỏa mãn: a^2013 + b^2013 + c^2013=1 và a^2012+b^2012+c^2012=1. Tính tổng M=a^2011+b^2012+c^2013
Em mới lớp 6 thui! Anh thông cảm em ko giải đc!
xét các số có mũ lên vẫn bằng chính nó có -1 và 1.mà -1+1+1=1.nên ta suy ra:a=-1;b=1;c=1.thay vào biểu thức:-1^2011+1^2012+1^2013=1.vậy a^2011+b^2012+c^2013=1.đề dài nên nhiều người lười làm.tick ra thi khó gì