tìm cặp số nguyên (x,y) thoả mãn: x^3+xy-3x-y=5
tìm cặp số nguyên (x,y) thoả mãn: x^3+xy-3x-y=5
Tìm cặp số nguyên(x;y) thoả mãn: y+3+xy+3x=7
\(xy+3x+y+3=7\)
\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=7\)
Mà \(x,y\) là số nguyên nên \(x+1,y+3\) là các ước của \(7\).
Ta có bảng giá trị:
x+1 | -7 | -1 | 1 | 7 |
y+3 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -4 | -10 | 4 | -2 |
Tìm cặp số nguyên thoả mãn (x;y) thoả mãn xy-(x+2y)=3
\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:
\(y-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(2\) | \(6\) | \(0\) | \(-4\) |
\(x\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)
=>xy-x-2y=3
=>x(y-1)-2y+2=5
=>(x-2)(y-1)=5
=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)
Tìm cặp số nguyên (x;y) thoả mãn:
\(x^2y+xy-2x^2-3x+4=0\)
Cho xy-3x-5y=7.tìm các cặp x; y số nguyên thoả mãn
tìm x nguyên :9x+5 là tích của 2 số nguyên liên tiếp
tìm x,y nguyên thoả mãn :xy+3x-y=6
tìm x,y nguyên thoả mãn :x2−22=1x2−2y2=1
tìm x,y nguyên thoả mãn :xy+3x-y=6
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |
tìm cặp số nguyên x biết (3x-5) chia hết cho (x+2 )
tìm cặp số nguyên (x,y) thoả mãn (x+3)(2y+1)=14
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
\(\left(x+30\right)\left(2y+1\right)=14\)
\(\Rightarrow\left(x+30\right)\left(2y+1\right)=1.14=14.1=2.7=7.2=\left(-1\right)\left(-14\right)=\left(-14\right)\left(-1\right)=\left(-2\right)\left(-7\right)=\left(-7\right)\left(-2\right)\)Tự lập bảng và tìm giá trị của x, y :)
Tìm các cặp số nguyên (x;y) thoả mãn x+y=xy
y=1 thì thấy vô lý.
Nên x = y /y − 1 ∈ Z
⇒ y⋮(y − 1)
⇒ y = 0 với y − 1 = ±1
(x, y) ∈ {(0, 0),(2, 2)}
thấy đúng thì k nha
Ta có: x+y=xy \(\Rightarrow\) -xy+x+y = 0 \(\Rightarrow\) -xy+x+y-1 = -1
\(\Rightarrow\) (-xy+x)+(y-1) = -1
-x(y-1)+(y-1) = -1
(-x+1)(y-1) = -1 hay (1-x)(y-1) = -1
\(\Rightarrow\) 1-x = -1 và y-1 = 1
1-x = 1 và y-1 = -1
Vậy có 2 cặp (x;y) thỏa mãn là x=2 và y=2
hay x=0 và y=0
tìm cặp số nguyên (x;y) thoả mãn: x+y+xy=2
x+y+xy=2
<=>x(y+1)+(y+1)=2+1
<=>(x+1)(y+1)=3
Ta có bảng:
x+1 | 1 | -1 |
y+1 | 3 | -3 |
x | 0 | -2 |
y | 2 | -4 |
Vậy các cặp (x;y) là (0;2);(-2;-4)
ST còn thiếu hai trường hợp là x=2 y=0 hoặc x=-4 y=-2
địt mẹ như cứt