Những câu hỏi liên quan
H24
Xem chi tiết
H24
10 tháng 4 2018 lúc 19:35

a,B=(10n-1)+(27n-9n)

B=999..9+27n - 9n (n chữ số 9)

B=9.(111..1-n)+27n (n chữ số 1)

Vì 111..1(n chữ số 1) và n cùng dư trong phép chia cho 3

=>111..1-1 (n chữ số 1) ⋮ 3

=>9.(111..1-n) ⋮ 9 . 3 =27

mà 27 n ⋮ 27

=> 9.(111..11 - n)+27n ⋮ 27

=>B ⋮ 27

Bình luận (1)
NT
Xem chi tiết
DL
30 tháng 3 2016 lúc 23:04

Ta có: A=10^n+18n-1

A=10^n-1+18n

A=99...9+18n

   n c/số 9

A=11...1.9+18n

n c/số 1

Ta đã biết mọi số tự nhiên đèu có thể viết dưới dạng tổng các chữ số của số đó và một số chia hết cho 9

=>11...1=n+9q  (q thuộc N)

n c/số 1

Ta có:A=(n+9q).9+18n

A= 9n+81q+18n

A=27n+81q

A=27(n+3q)

Vì 27(n+3q) chia hết cho 27 với mọi n thuộc N   

=>A chia hết cho 27 với mọi n thuộc N

Bài toán được chứng minh

Bình luận (0)
NT
7 tháng 5 2016 lúc 5:37

mình làm được rồi , không phải cách của bạn đâu

Bình luận (0)
TA
Xem chi tiết
MB
1 tháng 7 2016 lúc 18:26

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm).

Bình luận (0)
SB
1 tháng 7 2016 lúc 18:26

ban vào câu hỏi tương tự

Bình luận (0)
LH
1 tháng 7 2016 lúc 18:34

Ta có:

10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)  = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A

 Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).  

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).  

=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3

=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3

=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
DA
Xem chi tiết
NG
6 tháng 1 2017 lúc 20:47

ko bít

Bình luận (0)
DN
Xem chi tiết
LF
30 tháng 9 2016 lúc 23:27

a)3n+2-2n+2+3n-2n

=3n(32+1)-2n(22+1)

=3n*10-2n*5

=3n*10-10*2n-1

=10*(3n-2n-1) chia hết 10

b) bn có thể tham khảo trên mạng

Bình luận (3)
NC
Xem chi tiết
FT
21 tháng 1 2016 lúc 21:19

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Tick nhé  

Bình luận (0)
PO
Xem chi tiết
NT
Xem chi tiết
VK
Xem chi tiết
NQ
24 tháng 3 2022 lúc 23:18

ta sẽ chứng minh bằng quy nạp

Xét n=1 ta có : \(10^n+18n-1=27\text{ chia hết cho 27}\)

Giả sử điều kiện đúng tới n hay \(10^n+18n-1\text{ chia hết cho 27}\)

Xét tại n+1 ta có \(10^{n+1}+18\left(n+1\right)-1=10\times10^n+18n+17=10\times\left(10^n+18n-1\right)-162n+27\)

Dễ thấy \(10^n+18n-1\text{ chia hết cho 27}\) và \(-162n+27=27\times\left(-6n+1\right)\text{ chia hết cho 27}\)

Do đó điều kiện đúng với n+1 

Theo nguyên lý quy nạp thì A chia hết cho 27 với mọi số tự nhiên n

Bình luận (0)
 Khách vãng lai đã xóa