Những câu hỏi liên quan
TG
Xem chi tiết
BT
Xem chi tiết
TL
Xem chi tiết
NT
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Bình luận (0)
LS
Xem chi tiết
NA
23 tháng 6 2018 lúc 20:57

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

Bình luận (0)
VT
Xem chi tiết
LA
23 tháng 5 2019 lúc 16:43

a, Để pt có nghiệm thì \(\Delta\ge0\)

Hay: \(\left(-3\right)^2-4\left(m-1\right)\ge0\)

\(\Leftrightarrow9-4m+4\ge0\)

\(\Leftrightarrow-4m\ge-13\)

\(\Leftrightarrow m\le\frac{13}{4}\)

b, Với \(m\le\frac{13}{4}\), theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2=15\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=15\)

\(\Leftrightarrow\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=15\)

\(\Leftrightarrow3\sqrt{3^2-4\left(m-1\right)}=15\)

\(\Leftrightarrow\sqrt{9-4m+4}=5\)

\(\Leftrightarrow\sqrt{13-4m}=5\)

\(\Leftrightarrow13-4m=25\)

\(\Leftrightarrow4m=-12\)

\(\Leftrightarrow m=-3\left(tm\right)\) 

=.= hk tốt!!

Bình luận (0)
BT
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
VT
4 tháng 6 2017 lúc 8:55

\(x-\dfrac{15}{x}=2\)

\(\Leftrightarrow x-\dfrac{15}{x}-2=0\)

\(\Leftrightarrow\dfrac{x^2}{x}-\dfrac{15}{x}-\dfrac{2x}{x}=0\)

\(\Leftrightarrow x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm của pt là S= { 5;-3 }

Bình luận (2)
TN
4 tháng 6 2017 lúc 8:55

Ta có:x-\(\dfrac{15}x\)=2<=>\(\dfrac{x^2-15}x\)=2<=>x2-15=2x<=>x2-2x-15=0

<=>(x2-5x)+(3x-15)=0<=>x(x-5)+3(x-5)=0<=>(x+3)(x-5)=0

<=>x+3=0 hoặc x-5=0<=>x=-3 hoặc x=5

Vậy S={-3;5}

Bình luận (2)
DQ
4 tháng 6 2017 lúc 20:46

\(x-\dfrac{15}{x}=2\left(ĐKXĐ:x\ne0\right)\)

\(\Leftrightarrow\dfrac{x^2}{x}-\dfrac{15}{x}=\dfrac{2x}{x}\)

\(\Rightarrow x^2-15=2x\\ \Leftrightarrow x^2-2x-15=0\\ \Leftrightarrow x^2+3x-5x-15=0\\ \Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={-3;5}

Bình luận (0)
HN
Xem chi tiết
AH
11 tháng 5 2021 lúc 22:34

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)

Bình luận (0)