Những câu hỏi liên quan
KB
Xem chi tiết
TC
13 tháng 3 2016 lúc 21:50

bài 2 :338350

Bình luận (0)
PN
Xem chi tiết
BV
Xem chi tiết
HS
20 tháng 6 2018 lúc 19:54

Theo đề bài,ta có :

  A = \((1+3^2)+(3^4+3^6+3^8)+...+(3^{2002}+3^{2004}+3^{2006})\)

  A = \(10+3^4(1+3^2+3^4)+...+3^{2002}(1+3^2+3^4)\)

  A = \(10+3^4\cdot91+...+3^{2002}\cdot91\)

  A = \(10+(3^4+...+3^{2002})\cdot91\)

  A = \(10+7\cdot13(3^4+...+3^{2002})\)

Vậy : \(A=1+3^2+3^4+3^6+...+3^{2004}+3^{2006}⋮13\)dư 10

Chúc bạn học tốt

Bình luận (0)
DA
Xem chi tiết
PD
24 tháng 1 2021 lúc 15:18

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
NT
28 tháng 12 2016 lúc 19:30

Bài 1:

a) +) \(A=2+2^2+...+2^{2004}\)

\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)

\(\Rightarrow A=2.3+2^3.3+...+2^{2003}.3\)

\(\Rightarrow A=\left(2+2^3+...+2^{2003}\right).3⋮3\)

\(\Rightarrow A⋮3\left(đpcm\right)\)

+) \(A=2+2^2+...+2^{2004}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

\(\Rightarrow A=2.7+...+2^{2002}.7\)

\(\Rightarrow A=\left(2+...+2^{2002}\right).7⋮7\)

\(\Rightarrow A⋮7\left(đpcm\right)\)

+) \(A=2+2^2+....+2^{2004}\)

\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)

\(\Rightarrow A=2.15+...+2^{2001}.15\)

\(\Rightarrow A=\left(2+...+2^{2001}\right).15⋮15\)

\(\Rightarrow A⋮15\left(đpcm\right)\)

b) \(B=1+3+3^2+...+3^{99}\)

\(\Rightarrow B=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow B=\left(1+3+9+27\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow B=40+...+3^{96}.40\)

\(\Rightarrow B=\left(1+...+3^{96}\right).40⋮40\)

\(\Rightarrow B⋮40\left(đpcm\right)\)

Bình luận (3)
PN
Xem chi tiết
DL
14 tháng 11 2016 lúc 22:53

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

Bình luận (0)
DL
14 tháng 11 2016 lúc 22:46

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

Bình luận (0)
H24
23 tháng 11 2017 lúc 11:51

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

Bình luận (0)
PD
Xem chi tiết
NH
25 tháng 2 2018 lúc 9:21

số hạng A là

(2006-0):2+1=1004 số

nếu ta nhóm 3 số 1 ở A thì có số nhóm là 

1004:3=334 dư 2

ta có

A=(1+3^2)+(3^4+3^6+3^8)+...+(3^2002+3^2004+3^2006)

A= 10+3^4(1+3^2+3^4)+...+3^2002(1+3^2+3^4)

A=10+3^4.91+...+3^2002.91

A=10+(3^4+...+3^2002).91

A=10.7.13.(3^4+...+3^2002)

suy ra A chia hết cho 13 dư 10

k mk ha

Bình luận (0)
IM
25 tháng 2 2018 lúc 9:46

ko bít

Bình luận (0)
DA
Xem chi tiết
HH
Xem chi tiết
H24
12 tháng 5 2017 lúc 12:20

\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9

Bình luận (0)