Những câu hỏi liên quan
AM
Xem chi tiết
ML
16 tháng 6 2015 lúc 22:34

Đặt \(a^3=x,b^3=y,c^3=z\)\(\Rightarrow x+y+z=0\)

\(a^3b^3+5b^3c^3+3c^3a^3=xy+5yz+3zx=xy+5y\left(-x-y\right)+3x\left(-x-y\right)\)

\(=-\left(3x^2+7xy+5y^2\right)=-\left[3\left(x+\frac{7}{6}y\right)^2+\frac{11}{12}y^2\right]\le0\)

Nhìn đề có vẻ ảo ảo!

 

Bình luận (0)
NT
Xem chi tiết
AM
16 tháng 6 2015 lúc 20:36

Do 2x là số chẵn và 2x+xx+3=114

=>xx+3 là số chẵn =>x={0;2;4;...}

Với x=0 thì 20+03=114(L)

Với x=2 thì 22+25=114(L)

Với x=4 thì 24+47=144 (L)

Do x=4 thì vế trái > vế phải => x>4  thì vế trái càng lớn > vế phải

=>PT trên vô nghiệm

Bình luận (0)
NL
30 tháng 5 2017 lúc 7:25

bạn ấy nói có sai đó

2^x cũng lẻ khi x = 0 mà!

Bình luận (0)
TT
Xem chi tiết
H24

Ta có :

a3b3+2b3c3+3a3c3=b3(a3+2c3)+3a3c3

Từ a3+b3+c3=0⇒a3+2c3=c3−b3, thì:

b3(c3−b3)+3a3c3=−b6+c3(b3+3a3)

Và từ a3+b3+c3=0⇒b3+3a3=2a3−c3

Suy ra

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
3 tháng 1 2023 lúc 18:34

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Bình luận (0)
DT
3 tháng 1 2023 lúc 18:36

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Bình luận (0)
ND
Xem chi tiết
LF
19 tháng 7 2018 lúc 14:57

\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)

Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)

Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)

\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
H24
2 tháng 6 2019 lúc 9:06

Em có cách này tuy nhiên không chắc,do em mới học sos thôi,mong mọi người giúp đỡ ạ!

BĐT \(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b^3+3ab^2-7a^2b-3a^3}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b\left(b^2-a^2\right)+3a\left(b^2-a^2\right)}{2a+3b}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(b^2-a^2\right)\left(7b+3a\right)}{2a+3b}-2\left(b^2-a^2\right)\right)\ge0\) (ta không cần cộng thêm \(\Sigma_{cyc}2\left(b^2-a^2\right)\)\(\Sigma_{cyc}2\left(b^2-a^2\right)=\Sigma_{cyc}2\left(b^2-a^2+c^2-b^2+a^2-c^2\right)=0\))

\(\Leftrightarrow\Sigma_{cyc}\left(b^2-a^2\right)\left(\frac{7b+3a-4a-6b}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b\right)\left(a-b\right)^2}{2a+3b}\ge0\)

P/s: Hình như có gì đó sai sai ạ,mong mọi người check hộ em!Em cảm ơn nhiều ạ!

Bình luận (2)
LF
8 tháng 7 2018 lúc 22:18

sos helps :3

Bình luận (8)
NM
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
NC
21 tháng 10 2019 lúc 0:13

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NN
16 tháng 9 2016 lúc 19:43

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

k nha

Bình luận (0)
PT
10 tháng 4 2018 lúc 21:35

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

Bình luận (0)