Ta có:
a3b3 + 2b3c3 + 3a3c3
=a3b3 -b3c3 + 3b3c3 + 3a3c3
= b3 ( a3 - c3 ) +3c3 (b3 + a3 )
= b3 (-b3 - 2c3 ) +3c3 ( -c3)
= -b6 - 2 b3 c3 - 3 c6 \(\le\)0
Ta có:
a3b3 + 2b3c3 + 3a3c3
=a3b3 -b3c3 + 3b3c3 + 3a3c3
= b3 ( a3 - c3 ) +3c3 (b3 + a3 )
= b3 (-b3 - 2c3 ) +3c3 ( -c3)
= -b6 - 2 b3 c3 - 3 c6 \(\le\)0
1. Tìm x: \(2^x+x^{x+3}=114\)
2.Cho \(a^3+b^3+c^3=0.\)Chứng tỏ \(a^3b^3+2b^3c^3+3b^3c^3+3a^3c^3\le0\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Cho a,b,c khác 0 thỏa mãn: a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2
tính A=(1+a/b)(1+b/c)(1+c/a)
Cho 3 số dương a,b,c thỏa măn 2a+b-c/c = 2b+c-a/a = 2c+a-b/b
Tính A= (3a-c)(3b-a)(3c-b)/(3a-2b)(3b-2c)(3c-2a)
cho a,b,c là 3 số dương thỏa mãn : 3a-b /c = 3b - c /a = 3c -a / b
tính giá trị biểu thức A= a/2b-3c + b/2c-3a + c/2a-3b
Tìm a, b, c biết 3a/2b+2c+3=3b/2a+2c+3=3c/2a+2b-6=a+b+c
Tính giá trị biểu thức:
\(Q=\dfrac{a^3+b^3+c^3}{abc}\) với \(a,b,c\) thỏa mãn: \(\left(3a-2b\right)^2+\left|4b-3c\right|\le0\)
cho a,b,c,d thỏa mãn: \(\frac{2a+3c}{2b+3d}\)=\(\frac{3a-4c}{3b-4d}\). Tính \(\frac{4a^3d^3-b^3c^2}{4b^3c^3-a^3d^3}\)
tìm các số a,b,c biết 3a/2b+2c+a=3b/2a+2c=3=3c/2a+2b-6=a+b+c