Những câu hỏi liên quan
NT
Xem chi tiết
H24
12 tháng 1 2022 lúc 21:11

đề sai r bạn

Bình luận (0)
GM
12 tháng 1 2022 lúc 21:12

chuẩn cm nó luôn

Bình luận (0)
CM
Xem chi tiết
TN
9 tháng 6 2021 lúc 11:50

1) 52005 +52003 = 52003(52+1)=52003(25+1) = 52003.26 

Mà 26 chia hết cho 13 => ...

2)a2 + b2 + 1 ≥ ab + a + b <=> 2a2+2b2+2 ≥ 2ab + 2a +2b  (*nhân cả hai vế với  2*)

<=> 2a2-2ab+2b2 +2 -2a -2b ≥0  (*chuyển vế phải sang vế trái và đổi dấu*)

<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)≥0  

<=> (a-b)2+(a-1)2+(b-1)2≥0 

=> Bất đẳng thức đúng 

=> đpcm

3) Ta có a+b+c=0

<=> a+b = -c

<=> (a+b)3=(-c)3

<=> a3+3a2b+3ab2+b3= -c 

 

<=> a3+b3+c3= -3a2b -3ab  (*chuyển vế*)

<=> a3+b3+c3= -3ab(a+b) = -3ab(-c)=3abc (*do a+b = -c*)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 6 2018 lúc 17:04

Ta có: a - b 2 ≥ 0 a 2 + b 2 - 2 a b ≥ 0

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
NL
2 tháng 4 2023 lúc 10:16

BĐT cần chứng minh tương đương:

\(a^2+b^2+c^2\ge2ab-2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 1 2019 lúc 13:37

a) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

( v ì   a   +   b   >   0   n ê n   | a   +   b |   =   a   +   b ;   b 2   >   0 )

Bình luận (0)
LM
Xem chi tiết
NM
9 tháng 12 2021 lúc 19:14

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

Bình luận (0)
KM
Xem chi tiết
NX
Xem chi tiết
NT
10 tháng 9 2023 lúc 23:18

a) \(x^2+xy+y^2+1\)

\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)

\(\Rightarrow dpcm\)

Bình luận (0)
NT
10 tháng 9 2023 lúc 23:23

b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)

\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)

\(\Rightarrow dpcm\)

Bình luận (0)
AH
10 tháng 9 2023 lúc 23:24

b.

$x^2+4y^2+z^2-2x-6z+8y+15=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1$

$=(x-1)^2+(2y+2)^2+(z-3)^2+1\geq 0+0+0+1>0$ với mọi $x,y,z$

Ta có đpcm.

Bình luận (0)