cho hình chữ nhật ABCD , kẻ AH vuông góc với BD , biết HD=9cm , HB=16 cm. Tính AB, BC
Tính AB , AD của hình chữ nhật ABCD biết đường vuông góc AH kẻ từ A đến BD chia đoạn BD thành 2 đoạn thẳng HD=9cm , HB=16cm
Cho hình chữ nhật ABCD, gọi H là chân đường vuông góc hạ từ A xuống BD( AH vuông góc với BD) . Biết HB=9cm, HD=3cm.
Tính độ dài AB, AD
Bài 5. Cho hình chữ nhật ABCD, qua A kẻ đường vuông góc với BD tại H. Biết AB = 20 cm , AH = 12 cm a) Tính AD, HD, HB .b) AH cắt CD tại M. Chứng minh: DH.DB=AH.AM C) AH cắt BC tại K. Chứng minh; HA^ 2 =HM.HK
b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM
nên \(AH\cdot AM=AD^2\left(1\right)\)
Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB
nên \(DH\cdot DB=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
hình chữ nhật ABCD có AB=8cm AD=6cm kẻ AH vuông góc BD (H thuộc BD)
a) CM tam giác HDA đồng dạng tam giác ADB
b) Tính BD,AH
c) CM BC bình = DH nhân BH
Giải giúp mình cái
d)CM AH bình=HD nhân HB
Cho hình chữ nhật ABCD, AB=9cm,AC=12cm,kẻ AH vuông góc với BD tại H
a) Tính BD,AH và góc BDA
b) Kẻ HI vuông góc AB.CM AI.AB=DH.HB
c) Đường thẳng AH cắt BC tại M, cắt DC tại N. CM HA2=HM.HN
giúp tui giải ik mà làm ơn
a: ΔABD vuông tại A
=>\(BD^2=AB^2+AD^2\)
=>\(BD^2=9^2+12^2=225\)
=>BD=15(cm)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot15=12\cdot9=108\)
=>AH=108/15=7,2(cm)
XétΔABD vuông tại A có \(sinBDA=\dfrac{AB}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)
nên \(\widehat{BDA}\simeq37^0\)
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH^2=HD\cdot HB\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=HD\cdot HB\)
c: Xét ΔHDN vuông tại H và ΔHMB vuông tại H có
\(\widehat{HDN}=\widehat{HMB}\left(=90^0-\widehat{DBC}\right)\)
Do đó: ΔHDN đồng dạng với ΔHMB
=>HD/HM=HN/HB
=>\(HM\cdot HN=HD\cdot HB=HA^2\)
Cho hình chữ nhật ABCD, AB=9cm,AC=12cm,kẻ AH vuông góc với BD tại H
a) Tính BD,AH và góc BDA
b) Kẻ HI vuông góc AB.CM AI.AB=DH.HB
c) Đường thẳng AH cắt BC tại M, cắt DC tại N. CM HA2=HM.HN
giúp tui vs tui đag cần lời giải gấp
cho hình chữ nhật ABCD, AH vuông góc với BD (H thuộc BD), HD = 2cm, HB = 6cm. tính dộ dài AB, AD
hình bạn tự vẽ nha
áp dụng định lý py ta go vào tam giác ABD ta có AD^2 + AB^2 =64 (1)
áp dụng định lý pytago vào tam giác ABH ta có AB^2 = AH^2+ 36 (2)
áp dụng định lý pytago vào tam giác AHD ta có AD^2= AH^2 +4 (3)
thay (2)và (3) vào (1)
ta có 2AH^2 =24
=> AH^2 =12
thay AH^2=12 lần lượt vào 2 và 3
=> AB^2=12+36=48=>AB=\(\sqrt{48}\)
AD^2=12+4=16 => AD=4
cho tam giác ABC vuông tại A .kẻ AH vuông góc với BC . biết HB = 9cm,HC =16 cm;AC=5cm . tính AH;AB
TA CÓ BH + HC = BC
=> BC = 9+16=25
THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\)
\(AB^2=BC^2-AC^2\)
\(AB^2=25^2-5^2\)
......
AH TƯƠNG TỰ
Cho hình chữ nhật ABCD có AB = 12cm, BC = 9cm. Kẻ AH vuông góc với BD. a) Chứng minh: HBA đồng dạng ABC b) Tính độ cao AH c) Tính dIện tích AHB
Áp dụng định lý pitago: \(AC=\sqrt{12^2+9^2}=\sqrt{225}=15\left(cm\right)\)
Xét tam giác HBA và tam giác ABC, có:
\(\widehat{BHA}=\widehat{ABC}=90^o\)
\(\widehat{A}\): chung
Vậy tam giác HAB đồng dạng tam giác BAC ( g.g )
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AB}{AC}=\dfrac{HB}{BC}\)
\(\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{12^2}{15}=9,6\left(cm\right)\)
\(\Rightarrow HB=\dfrac{AB.BC}{AC}=\dfrac{12.9}{15}=7,2\left(cm\right)\)
\(S_{AHB}=\dfrac{1}{2}.AH.HB=\dfrac{1}{2}.9,6.7,2=34,56\left(cm^2\right)\)
a,
Xét Δ HBA và Δ BAC, có :
\(\widehat{BHA}=\widehat{ABC}=90^o\)
\(\widehat{ABH}=\widehat{CAB}\) (cùng phụ \(\widehat{ABC}\))
=> Δ HBA ~ Δ BAC (g.g)
b,
Xét Δ ABC vuông tại B, có :
\(AC^2=AB^2+BC^2\) (Py - ta - go)
=> \(AC^2=12^2+9^2\)
=> AC = 15 (cm)
Ta có : Δ HBA ~ Δ BAC (cmt)
=> \(\dfrac{HA}{BC}=\dfrac{BA}{AC}\)
=> \(\dfrac{HA}{9}=\dfrac{12}{15}\)
=> HA = 7,2 (cm)
c,
Xét Δ AHD vuông tại H, có :
\(AD^2=AH^2+DH^2\) (Py - ta - go)
=> \(9^2=7,2^2+DH^2\)
=> DH = 5,4 (cm)
Ta có : BD = BH + DH
=> 15 = BH + 5,4
=> BH = 9,6 (cm)
Ta có :
\(S_{\text{Δ}AHB}=\dfrac{1}{2}.AH.HB\)
=> \(S_{\text{Δ}AHB}=34,56\left(cm^2\right)\)