Những câu hỏi liên quan
BT
Xem chi tiết
NT
26 tháng 7 2023 lúc 14:47

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

Bình luận (0)
JC
Xem chi tiết
JC
4 tháng 11 2019 lúc 18:57

ai đó giúp toi đi aaa

Bình luận (0)
 Khách vãng lai đã xóa

ĐK: x>0, 5x-3\(\sqrt{x}\)+8≠ 0

+) 5x-3\(\sqrt{x}\)+8 <0 thì A<0

+)5x-3\(\sqrt{x}\)+8>0, ta có:

\(\frac{1}{5x-3\sqrt{x}+8}\)  lớn nhất khi và chỉ khi \(5x-3\sqrt{x}+8\)bé nhất

5x-3\(\sqrt{x}\)+8 ≥ 3/10 ∀x

⇒ Min5x-3\(\sqrt{x}\)+8=3/10

⇒ GTLN của A là  1: 3/10=10/3

Sai thì thôi :v

Bình luận (0)
 Khách vãng lai đã xóa
JC
Xem chi tiết
SK
4 tháng 11 2019 lúc 23:33

ĐKXĐ :\(x\ge0\)

Mẫu :\(5x-3\sqrt{x}+8\)

\(=\left(\sqrt{5x}\right)^2-2.\frac{3\sqrt{5}}{10}.\sqrt{5x}+\left(\frac{3\sqrt{5}}{10}\right)^2+8-\left(\frac{3\sqrt{5}}{10}\right)^2\)

\(=\left(\sqrt{5x}-\frac{3\sqrt{5}}{10}\right)^2+\frac{151}{20}\)

\(=\sqrt{5}.\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}\ge\frac{151}{20}\)(do \(\left(\sqrt{x}-\frac{3}{10}\right)^2\ge0\) )

\(\Rightarrow5x-3\sqrt{x}+8\ge\frac{151}{20}\)

\(\Rightarrow\frac{1}{5x-3\sqrt{x}+8}\le\frac{20}{151}\)

Mặt khác \(A=\frac{1}{5x-3\sqrt{x}+8}\)

\(\Rightarrow A\le\frac{20}{151}\)

Dấu ''='' xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{10}\) hay \(x=\frac{9}{100}\)

Vậy Max A = \(\frac{20}{151}\)\(\Leftrightarrow\)\(x=\frac{9}{100}\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
6 tháng 11 2019 lúc 23:16

\(A=\frac{1}{5x-3\sqrt{x}+8}\left(ĐKXĐ:x\ge0\right)\)Dễ dàng cm A>0

Đặt \(\sqrt{x}=t\)(\(t\ge0\))

Khi đó ta viết lại A dưới dạng \(A=\frac{1}{5t^2-3t+8}\)

\(\Leftrightarrow5t^2A-3t.A+8A-1=0\)

\(\Delta=9A^2-4.5A\left(8A-1\right)=9A^2-160A^2+20A=-151A^2+20A\ge0\)

\(\Leftrightarrow151A^2-20A\le0\)

\(\Leftrightarrow A\left(151A-20\right)\le0\)

\(\Leftrightarrow A\le\frac{20}{151}\)(Do A>0)

Vậy MAXA=20/151.Dấu "=" xảy ra khi

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\111A-20\ge0\end{cases}}\\\hept{\begin{cases}A\ge0\\111A-20\le0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\A\ge\frac{20}{111}\end{cases}}\\\hept{\begin{cases}A\ge0\\A\le\frac{20}{111}\end{cases}}\end{cases}\Rightarrow}}A\le\frac{20}{111}\)

Bình luận (0)
 Khách vãng lai đã xóa
JC
Xem chi tiết
NL
4 tháng 11 2019 lúc 18:40

ĐKXĐ: ...

\(A=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{10}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)

\(A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)

Bình luận (0)
 Khách vãng lai đã xóa
MC
Xem chi tiết
NL
15 tháng 10 2019 lúc 15:54

\(A=\frac{1}{5x-3\sqrt{x}+8}=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)

\(\Rightarrow A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)

Bình luận (0)
MH
Xem chi tiết
3P
Xem chi tiết
NT
18 tháng 9 2023 lúc 14:57

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

Bình luận (0)
H24
Xem chi tiết
KL
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Bình luận (0)
TB
Xem chi tiết
AN
19 tháng 11 2016 lúc 18:23

2/ \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)

Ta thấy rằng mẫu là số dương nên để P lớn nhất thì mẫu bé nhất hay x = 0

\(P=\frac{2}{3}\)

Bình luận (0)
AN
19 tháng 11 2016 lúc 18:16

1/ Đặt \(\sqrt{x}=a\:voi\:a\ge0\) thì pt thành

\(\frac{2-5a}{a+3}=\frac{5-8a}{3a+1}\)

\(\Leftrightarrow7a^2-20a+13=0\)

<=> (a - 1)(7a - 13) = 0

Bình luận (0)
AN
19 tháng 11 2016 lúc 18:17

Giải tiếp câu 1/

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{13}{7}\end{cases}}\)

Bình luận (0)