Những câu hỏi liên quan
LJ
Xem chi tiết
LN
7 tháng 5 2022 lúc 10:29

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 
Bình luận (0)
DL
7 tháng 5 2022 lúc 11:28

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

Bình luận (0)
H24
Xem chi tiết
NL
4 tháng 3 2022 lúc 21:45

Trừ vế cho vế:

\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)

- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)

Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m

Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)

Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)

Ta có:

\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)

\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)

Vậy \(m>16\) thì hệ có 1 nghiệm

Bình luận (1)
LP
Xem chi tiết
LH
Xem chi tiết
DH
Xem chi tiết
TL
1 tháng 8 2015 lúc 16:59

=> 5x2 + 5xy + 5y2 = 7x + 14y

=> 5x2 + 5xy - 7x + 5y- 14y = 0 

=> 5x+ (5y -7).x + (5y - 14y) = 0   (*)

Tính \(\Delta\) = (5y - 7)- 4.5.(5y - 14y) = -75y2 + 210y + 49  

Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49  = k( với k nguyên)

=> - 3. (25y- 2.5y.7 + 49) + 196 = k2

=> -3.(5y - 7)+ 196 = k2

=> 3.(5y - 7)+ k= 196 => 3. (5y-7)2  \(\le\) 196 => (5y - 7)2  \(\le\) 66 =>-8  \(\le\)  5y - 7 \(\le\) 8

=> -1/5  \(\le\) y \(\le\) 3

y nguyên nên y có thể bằng 0; 1;2;3

Với tưng giá trị của y ta thay vào (*) => x 

Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu

Bình luận (0)
PH
Xem chi tiết
GL
9 tháng 2 2020 lúc 13:11

\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)

\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)

Đến đây thì đơn giản rồi nhé :)))

Bình luận (0)
 Khách vãng lai đã xóa
AZ
9 tháng 2 2020 lúc 13:23

Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)

\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)

\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)

\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)

\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)

\(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)\(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)\(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
NL
6 tháng 8 2020 lúc 20:31

1/ ĐKXĐ: ...

\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)

\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow2t^2+2015t-2016=0\)

Nghiệm xấu kinh khủng, bạn tự giải

2. ĐKXĐ: ...

\(x^2+4x+4+4y^2-8y+4=4xy+13\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)

Thay xuống dưới:

\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)

\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)

\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)

\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)

\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)

\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 12 2017 lúc 14:21

Ta co :(x+y)^2=(x-1)(y-1)

X^2+2xy+y^2=xy-x-y+1

2x^2+2xy+2y^2+x+y-2=0

(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4

(x+y)^2+(x+1)^2+(y+1)^2=4

Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong

Suy ra co 3 truong hop

°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4

°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0

°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0

Sau do tu giai ra tim x;y

Bình luận (0)
NT
Xem chi tiết
NH
17 tháng 11 2018 lúc 21:10

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Bình luận (0)
NA
17 tháng 11 2018 lúc 21:31

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

Bình luận (0)
NH
17 tháng 11 2018 lúc 21:53

bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)dễ hơn

Bình luận (0)