\(\frac{x}{z}=\frac{z}{y}CMR\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\) .CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)
Cho các số x, y, z dương. CMR:\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\)\(\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Lời giải:
Xét hiệu:
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(\ge \frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3\sqrt[3]{\frac{x^2}{y^2}.\frac{y^2}{z^2}.\frac{z^2}{x^2}}-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(=\frac{1}{2}\left[(\frac{x}{y}-1)^2+(\frac{y}{z}-1)^2+(\frac{z}{x}-1)^2\right]\geq 0\)
\(\Rightarrow \frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Cho x,y,z >0. CMR: \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Cho 3 số x,y,z>0tm xyz =1.
CMR :\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:
\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)
Bài toán tương đương với
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)
Áp dụng BĐT Am-Gm ta có:
\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)
Thực hiện tương tự và cộng theo vế, suy ra:
\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)
\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)
làm thế này chả biết có đúng ko nữa, sếp Ace có rảnh thì xem giúp em nhé ^^!
theo Bđt Cauchy, ta có:
\(x^3z+xy^3+yz^3\ge\sqrt[3]{x^4y^4z^4}=1\)
\(-x^2z-xy^2-yz^2\ge-\sqrt[3]{x^3y^3z^3}=-1\)
cộng theo vế 2 bất đẳng thức trên, ta được:
(cái này tớ muốn lách luật: không được trừ theo vế 2 bđt cùng chiều, chả biết có đc ko)
\(x^3z+xy^3+yz^3-x^2z-xy^2-yz^2\ge0\)
\(\Leftrightarrow x^2z\left(x-1\right)+xy^2\left(y-1\right)+yz^2\left(z-1\right)\ge0\)
\(\Leftrightarrow\dfrac{x\left(x-1\right)}{y}+\dfrac{y\left(y-1\right)}{z}+\dfrac{z\left(z-1\right)}{x}\ge0\)
\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\dfrac{x}{y}-\dfrac{y}{x}-\dfrac{z}{x}\ge0\)
\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{x}\) (đpcm)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !
Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath
cho x,y,z > 0 . Cmr: \(\frac{x^2+y^2}{y+z}+\frac{y^2-z^2}{z+x}+\frac{z^2-x^2}{x+y}\ge0\)
cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
Áp dụng bất đẳng thức Cauchy :
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)
Tương tự ta cũng có :
\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)
\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)
Cộng theo vế ta được :
\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)
\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{(\frac{x^2}{y})^2}{x+z}+\frac{(\frac{y^2}{z})^2}{x+y}+\frac{(\frac{z^2}{x})^2}{y+z}\geq \frac{\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)^2}{x+z+x+y+y+z}\)
Tiếp tục áp dụng:
\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq \frac{(x+y+z)^2}{y+z+x}=x+y+z\)
Do đó: \(\text{VT}\geq \frac{(x+y+z)^2}{x+z+x+y+y+z}=\frac{x+y+z}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Cho x,y,z>0.Cmr
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+x}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Ta có
\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)
=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)
=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)
=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)