Những câu hỏi liên quan
ND
Xem chi tiết
ND
20 tháng 1 2022 lúc 11:06

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

Bình luận (0)
 Khách vãng lai đã xóa
PL
20 tháng 1 2022 lúc 11:10

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

Bình luận (0)
 Khách vãng lai đã xóa
JN
20 tháng 1 2022 lúc 11:10

????????????

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
1 tháng 7 2021 lúc 19:33

Giả sử \(\sqrt{3}-\sqrt{2}\) là số hữu tỉ

nên \(\sqrt{3}-\sqrt{2}=\dfrac{p}{q}\left(q\ne0\right)\)

\(\Leftrightarrow\dfrac{p^2}{q^2}=5-2\sqrt{6}\)

\(\Leftrightarrow\dfrac{p^2}{q^2}-5=-2\sqrt{6}\)(vô lý)

Vậy: \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

Bình luận (0)
KY
1 tháng 7 2021 lúc 19:33

Link : Chứng minh rằng căn2 +căn3 là số vô tỉ 

Bình luận (0)
TH
Xem chi tiết
BT
Xem chi tiết
VM
24 tháng 10 2019 lúc 9:42

\(x^{2019}+y^{2019}=2x^{1009}.y^{1009}< =>x^{2020}+x.y^{2019}=2x^{1010}y^{1009}< =\)\(>\left(x^{1010}-y^{1009}\right)^2=y^{2018}\left(1-xy\right)=>\sqrt{1-xy}=\frac{x^{1010}-y^{1009}}{y^{1009}}\)

x;y là số hữu tỉ nên có dạng \(x=\frac{m}{n};y=\frac{p}{q}\left(m;n;p;q\in Z\right)\)=> \(\sqrt{1-xy}=\frac{m^{1010}.q^{1009}-n^{1010}.p^{1009}}{n^{1010}.p^{1009}}=\frac{A}{B}\left(A;B\in Z\right)\)=> \(\sqrt{1-xy}\in Q\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
NH
27 tháng 2 2021 lúc 12:34

Giả sử \(\sqrt{7}\) là số hữu tỉ 

Ta có :

\(\sqrt{7}=\dfrac{a}{b}\) (a,b nguyên tố cũng nhau)

\(\Leftrightarrow\dfrac{a^2}{b^2}=7\)

\(\Leftrightarrow a^2=7b^2\)

\(\Leftrightarrow a^2⋮7\) Mà 7 là số nguyên tố 

\(\Leftrightarrow a⋮7\) \(\left(1\right)\)

\(\Leftrightarrow a^2⋮49\)

\(\Leftrightarrow7b^2⋮49\)

\(\Leftrightarrow b⋮7\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow a,b\) không ngto cùng nhau

\(\Leftrightarrow\) Giả sử sai

Vậy..

Bình luận (0)
NT
Xem chi tiết
H24
6 tháng 4 2021 lúc 1:03

Giả sử căn 7 là số hữu tỉ. Khi đó 

\(\sqrt{7}=\dfrac{a}{b}\left(a,b\in N;a,b>0;\left(a,b\right)=1\right)\)

\(\Rightarrow7b^2=a^2\)

\(\Rightarrow a^2⋮7\Rightarrow a⋮7\Rightarrow a^2⋮49\Rightarrow7b^2⋮49\Rightarrow b^2⋮7\Rightarrow b⋮7\\ \Rightarrow\left(a,b\right)⋮7\Rightarrow1⋮7\left(VL\right)\)

=> giả sử sai .

Vậy căn 7 là số vô tỉ

Bình luận (0)
H24
6 tháng 4 2021 lúc 5:53

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

Bình luận (0)
NN
Xem chi tiết
MH
2 tháng 10 2021 lúc 4:52

Giả sử căn 3 không phải số vô tỉ suy ra:

tồn tại số m và n  sao cho căn 3 = m/n   (m,n là nguyên tố cùng nhau)

khi đó  3n^2 = m^2

=> m chia hết 3, đặt m=3p ( p là số nguyên)

thay m = 3p ta có

3n^2 = 9p^2

n^2 = 3p^2

=> n chia hết cho 3

=> m và n cùng chia hết cho 3

mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau

=> căn 3 là số vô tỉ

Bình luận (0)
PA
Xem chi tiết
MH
18 tháng 4 2022 lúc 16:51

Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\dfrac{m}{n}\left(m,n\in Z;n\ne0\right)\) sao cho \(\left(m,n\right)=1\)

\(\Rightarrow m^2=7n^2\) \(\Rightarrow m^2⋮7\)

Do 7 là số nguyên tố nên \(m⋮7\Rightarrow m=7k\Rightarrow49k^2=7n^2\Rightarrow n^2=7k^2\)

Suy luận như trên ta được \(n⋮7\)

\(\Rightarrow7\inƯC\left(m,n\right)\) (mâu thuẫn giả thiết \(\left(m,n\right)=1\))

Vậy \(\sqrt{7}\) là số vô tỉ

Bình luận (0)
NP
18 tháng 4 2022 lúc 16:52

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n  √7= m/n  ⇒ 7 = m²/n²  ⇒ m² =7n²  ⇒ m² chia hết cho n²  ⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)  Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

Bình luận (0)
TN
Xem chi tiết
SK
24 tháng 9 2023 lúc 8:06

Giả sử \(\sqrt{7}\) là số hữu tỉ

=> \(\sqrt{7}=\dfrac{m}{n}\)(Tối giản)

=> 7=\(\dfrac{m^2}{n^2}\)hay 7n2=m2(1)

Đẳng thức này chứng tỏ m2\(⋮7\)mà 7 là số nguyên tố nên \(m⋮7\).

Đặt m=7k (\(k\in Z\)), ta có m2=49k2(2)

Từ (1) và (2) suy ra 7n2=49knên n2=7k2(3)

Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên tố nên n⋮7. m và n cùng chia hết cho 7 nên phân số \(\dfrac{m}{n}\)không tối giản, trái giả thiết.

Vậy \(\sqrt{7}\) không phải số hữu tỉ; do đó \(\sqrt{7}\) là số vô tỉ.

Bình luận (4)
H9
24 tháng 9 2023 lúc 8:09

Giả sử \(\sqrt{7}\) là số hữu tỉ được viết dưới dạng \(\dfrac{a}{b}\left(b\ne0\right)\) 

\(\Rightarrow\sqrt{7}=\dfrac{a}{b}\)

\(\Rightarrow\left(\sqrt{7}\right)^2=\left(\dfrac{a}{b}\right)^2\)

\(\Rightarrow7=\dfrac{a^2}{b^2}\)

\(\Rightarrow a^2=7b^2\)  

Nên: \(a^2\) ⋮ 7

\(\Rightarrow a\) ⋮ 7 (1)

Và: \(7b^2\) ⋮ 49

\(\Rightarrow b^2\) ⋮ 7

\(\Rightarrow b\) ⋮ 7 (2)

Từ (1) và (2) \(\Rightarrow\left(a;b\right)\ne1\) 

Theo giả sử thì: \(\left(a;b\right)=1\)

Điều giả sử là sai 

\(\Rightarrow\sqrt{7}\) không phải là số hữu tỉ mà là số vô tỉ (đpcm) 

Bình luận (2)