cmr x4 + 2x3 - 2x2 -10x + 20 > 0 với mọi số nguyên x
Có bao nhiêu giá trị nguyên của tham số m để phương trình m x 2 + 2 x 3 − 2 x 2 − 4 x + 2 = 0 có nghiệm đúng với mọi x ≤ − 3 ?
A. 4
B. Không có giá trị nào của m
C. Vô số giá trị của m
D. 6
Đáp án C
Phương trình
⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0 → t = x 2 + 2 x m t 3 − 2 t + 2 = 0 1
Ta có f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞
Khi đó 1 ⇔ m = 2 t 2 − 2 t 3 = f t với t ∈ 3 ; + ∞
Có f ' t = − 4 t 3 + 6 t 4 ⇒ f t nghịch biến trên 3 ; + ∞ ⇒ max 3 ; + ∞ f x ≤ f 3 = 4 27
Suy ra m ≤ max 3 ; + ∞ f x = 4 27 ⇒ có vô số nghiệm giá trị của m
x4 – 2x3 + 2x – 1
a3 – a4 + 2a3 + 2a2
x4 + x3 + 2x2 + x + 1
x4 + 2x3 + 2x2 + 2x + 1
x2y + xy2 + x2z + y2z + 2xyz
x3 + x4 + x3 + x2 + x + 1
a: Ta có: \(x^4-2x^3+2x-1\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)
b: Ta có: \(-a^4+a^3+2a^3+2a^2\)
\(=-a^2\left(a^2-a-2a-2\right)\)
c: Ta có: \(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)
Tìm x,y thuộc Z biết x4+2x3+2x2+x+3=y2
giúp mình với ạ
Cho đa thức F(x) = X4 + 2x3 - 2x2- 6x + 5 trong các số sau 1;-1;2;-2 số nào là nghiệm của đa thức F(x). giúp mình với
Thay x = 1 vào đa thứ F(x) ta cso
F(x) = 14 + 2.13 - 2.12- 6.1 + 5
F (x) = 0
Vậy 1 không phải là nghiệm của đa thức F(x)
Thay x = -1 vào đa thức F(x) ta có
F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5
F(x) = 8
Vậy -1 không phải là nghiệm của đa thức F(x)
Thay x = 2 vào đa thức F(x) ta có
F(x) = 24 + 2.23 - 2.22- 6.2 + 5
F(x) = 17
Vậy 2 không phải là nghiệm của đa thức F(x)
Thay x = 12 vào đa thức F(x) ta có
F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5
F(x)= -7
Vậy -2 không phải là nghiệm của đa thức F(x)
Hệ số của x 4 trong đa thức M ( x ) = 2 x 2 - 7 + 2 x 3 - 4 x 4 + 5 x 4 + 2 là:
A. -5
B. -4
C. 2
D. 1
Rút gọn
M(x)= 2x2 - 7 + 2x3 - 4x4 + 5x4 + 2
= x4 + 2x3 + 2x2 - 5.
Chọn D
Cho 3 đa thức: A(x)= -7+2x2+x4+3x5-x3
B(x)= -x+x4+2x3-7
C(x)= 2x-x4-3x3
Tính A(x)+B(x)-C(x)
\(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=\left(-7+2x^2+x^4+3x^5-x^3\right)+\left(-x+x^4+2x^3-7\right)-\left(2x-x^4-3x^3\right)\)
\(=3x^5+3x^4+4x^3+2x^2-3x-14\)
Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5
Trong các số sau : 1; –1; 5; –5 số nào là nghiệm của đa thức f(x)
\(x^4+2x^3-2x^2-6x+5=0\\ \Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(4x^3-8x^2+4x\right)+\left(5x^2-10x+5\right)=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+4x\left(x^2-2x+1\right)+5\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^2+4x+4\right)+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+2\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)
Tìm x:
a) 5x(x-2)+(2-x)=0
b) x(2x-5)-10x+25=0
c) \(\dfrac{25}{16}\)-4x2+4x-1=0
d)x4+2x2-8=0
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
a) \(5x\left(x-2\right)+\left(2-x\right)=0\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(x\left(2x-5\right)-10x+25=0\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{5}{2}\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(x-\dfrac{9}{8}\right)\left(x+\dfrac{1}{8}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{9}{8}=0\\x+\dfrac{1}{8}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=-\dfrac{1}{8}\end{matrix}\right.\)
d) \(x^4+2x^2-8=0\)
\(\Rightarrow\left(x^4+2x^2+1\right)-9=0\)
\(\Rightarrow\left(x^2+1\right)^2-3^2=0\)
\(\Rightarrow\left(x^2+1-3\right)\left(x^2+1+3\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\end{matrix}\right.\) \(\Rightarrow x^2=2\) \(\Rightarrow x=\pm\sqrt{2}\)
7) x4+2x3-2x2+2x-3=0
8) (x-1)( x2+5x-2)-x3+1=0
9) x2+(x+2)(11x-7)=4
(GIẢI PHƯƠNG TRÌNH)
\(x^4+2x^3-2x^2+2x-3=0\\ \Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\\ \Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^3-x^2+x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left[x^2\left(x-1\right)+\left(x-1\right)\right]=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\left(\text{vì }x^2+1\ge1>0\right)\)
Vậy ...
\(\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[\left(x^2+5x-2\right)-\left(x^2+x+1\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy ...
\(x^2+\left(x+2\right)\left(11x-7\right)=4\\ \Leftrightarrow x^2-4+\left(x+2\right)\left(11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-2\right)+\left(11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-2+11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\\ \Leftrightarrow3\left(x+2\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\4x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy ...