Cho x,y,z thõa mãn: \(x^2+y^2+z^2=3\)
Tìm giá trị nhỏ nhất, lớn nhất của biểu thức: \(P=x+y+2z\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện: x^2+ y^2+x^2+x^2y^2+y^2z^2+z^2x^2=6. \text{Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}}\)\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}\)
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Sử dụng bất đẳng thức AM-GN, ta có:
\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)
Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:
\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)
Từ đó suy ra: \(Q\le3\)
Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\) nên ta có kết luận \(Max_Q=3\)
Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:
\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)
Chứng minh tương tự, ta cũng có:
\(yz< 2,\) \(zx< 2.\)
Do đó, ta có:
\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Hay: \(Q\ge\sqrt{6}\)
\(\Rightarrow Min_Q=\sqrt{6}\)
cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
Ta sẽ chứng minh \(P_{min}=1\)
TH1: \(xyz=0\)
\(\Rightarrow x^2y^2z^2=0\Rightarrow x^4+y^4+z^4=1\)
\(P=x^2+y^2+z^2\ge\sqrt{x^4+y^4+z^4}=1\)
TH2: \(xyz\ne0\) , từ điều kiện, tồn tại 1 tam giác nhọn ABC sao cho \(\left\{{}\begin{matrix}x^2=cosA\\y^2=cosB\\z^2=cosC\end{matrix}\right.\)
\(P=cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\)
Ta sẽ chứng minh \(cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\ge1\)
\(\Leftrightarrow4sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}\ge\sqrt{2cosA.cosB.cosC}\)
\(\Leftrightarrow8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}\ge cosA.cosB.cosC\)
\(\Leftrightarrow\dfrac{8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}}{8sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}cos\dfrac{A}{2}cos\dfrac{B}{2}cos\dfrac{C}{2}}\ge cotA.cotB.cotC\)
\(\Leftrightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\ge cotA.cotB.cotC\)
\(\Leftrightarrow tanA.tanB.tanC\ge cot\dfrac{A}{2}cot\dfrac{B}{2}cot\dfrac{C}{2}\)
\(\Leftrightarrow tanA+tanB+tanC\ge cot\dfrac{A}{2}+cot\dfrac{B}{2}+cot\dfrac{C}{2}\)
Ta có:
\(tanA+tanB=\dfrac{sin\left(A+B\right)}{cosA.cosB}=\dfrac{2sinC}{cos\left(A-B\right)-cosC}\ge\dfrac{2sinC}{1-cosC}=\dfrac{2sin\dfrac{C}{2}cos\dfrac{C}{2}}{2sin^2\dfrac{C}{2}}=cot\dfrac{C}{2}\)
Tương tự: \(tanA+tanC\ge cot\dfrac{B}{2}\) ; \(tanB+tanC\ge cot\dfrac{A}{2}\)
Cộng vế với vế ta có đpcm
Vậy \(P_{min}=1\) khi \(\left(x^2;y^2;z^2\right)=\left(1;0;0\right)\) và các hoán vị hoặc \(\left(x^2;y^2;z^2\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Cho các số thực x, y, z thỏa mãn điều kiện x - y + z = 3 x 2 + y 2 + z 2 = 5 . Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức P = x + y - 2 z + 2 . Tính M + m
A. M + m = 2
B. M + m = 4 3 3
C. M + m = 4
D. M + m = 4 3 6
Cho các số thực dương x,y,z thõa mãn \(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}=\sqrt{xyz}\)
Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)
\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)
\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)
\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)
Dấu = xảy ra khi \(x=y=z=9\)
Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\)
CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\) ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)
\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
Mặt khác : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)
Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)
" = " \(\Leftrightarrow x=y=z=9\)
Cho a, y, z là các số thực dương thoả mãn \(\dfrac{1}{x}+\dfrac{2}{y}\le1;x+\dfrac{2}{z}\le3\) . Tìm giá trị nhỏ nhất của biểu thức \(P=y^2+2z^2\)
\(\dfrac{1}{x}+\dfrac{2}{y}\le1\Rightarrow\dfrac{2}{y}\le1-\dfrac{1}{x}\Rightarrow y\ge\dfrac{2x}{x-1}=2+\dfrac{2}{x-1}\)
\(x+\dfrac{2}{z}\le3\Rightarrow x< 3;\dfrac{2}{z}\le3-x\Rightarrow z\ge\dfrac{2}{3-x}\Rightarrow y+z\ge2+\dfrac{2}{x-1}+\dfrac{2}{3-x}\)
Lúc này ta sẽ áp dụng bất đẳng thức Bunhiacopski
Ta có:
\(6^2\le\left(y+z\right)^2=\left(\sqrt{2}\dfrac{y}{\sqrt{2}}Z\right)^2\le3\left(\dfrac{y^2}{2}+z^2\right)=\dfrac{3}{2}\left(y^2+2z^2\right)\)
\(\Rightarrow P\ge24\). Dấu đẳng thức xảy ra khi và chỉ khi \(y=4,z=2\)
Vậy giá trị nhỏ nhật của P là 24
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).
\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).
Ta có:
\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)
\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).
Ta có:
\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).
\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).
\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).
\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).
\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).
Chứng minh tương tự, ta được:
\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).
Chứng minh tương tự, ta được:
\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).
\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).
\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)
\(\left(4\right)\).
Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).
\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)
(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).
\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(P\ge\frac{\sqrt{5}}{3}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).
Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
Cho x, y, z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=4\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x+y+z
Ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)
\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)
Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??
Cho x,y,z là các số thực thỏa mãn \(y^2+yz+z^2=1-\frac{3x^2}{2}\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P= x+y+z