Chứng minh rằng
a) A=518+517+516 chia hết cho 29
b) B=415+829 chia hết cho 9
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1)Chứng minh rằng
a) 52014+52013-52012 chia hết cho 29
b) 7500+7499-7498 chia hết cho 11
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
cho a và b là các số tự nhiên và (20a+11b) chia hết cho 5.Chứng minh rằng:(80a+29b) chia hết cho 5
Cách 1:
Do 20a+11b chia hết cho 5 mà 20a chia hết cho 5 nên 11b cũng chia hết cho 5 => b={0; 5}
Với b={0; 5} thì 80a đương nhiên chia hết cho 5 còn 29b có chữ số tận cùng ở kq là 0 hoặc 5 nên cũng chia hết cho 5 nên 80a+29b chia hết cho 5 khi 20a+11b chia hết cho 5
Cách 2:
20a+11b chia hết cho 5 => 4x(20a+11b)=80a+44b chia hết cho 5
80a+44b-(80a+29b)=25b chia hết cho 5
=> 80a+29b chia hết cho 5
chứng minh rằng
A = \(3+3^2+3^3+3^4+...+3^{60}\)
a) A chia hết cho 3
b) A chia hết cho 4
c) A chia hết cho 13
giúp mình mik cần gấp
a) \(A=3+3^2+3^3+...+3^{60}\)
Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)
\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)
b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)
Cho a, b là các số nguyên. Chứng minh rằng
a) chia hết cho a-b với mọi số tự nhiên n.
b) chia hết cho a+b với mọi số tự nhiên n lẻ.
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
Chứng minh rằng
a) G=88 + 220 chia hết cho 17
b) H=2+2+22+23+...+260 chia hết cho 3; 7; 15
c) I=E=1+3+32+33+...+31991 chia hết cho 13; 14
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
Cho các số nguyên a,b.Chứng minh rằng
a)2a+3b chia hết cho 13 khi và chỉ khi 5a+b chai hết cho 13
b)4a+3b chia hết cho 11 khi và chỉ khi 7a-3b chia hết cho 11
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
Tổng 1/40+1/41+1/42+...+1/98+1/99 bằng phân số a/b . Chứng minh rằnga chia hết cho 139
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
25 chia hết cho 2 và 5
58 chia hêts cho3 và 5
17 36 chia hết cho 9