Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KA
Xem chi tiết
NH
31 tháng 1 2021 lúc 21:22

a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)

b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)

Bình luận (0)
NC
Xem chi tiết
OY
23 tháng 8 2021 lúc 8:26

a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)

Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11

Bình luận (0)
OY
23 tháng 8 2021 lúc 8:28

b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)

Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)

Bình luận (0)
H24
23 tháng 8 2021 lúc 8:28

a)ab+ba

=a.10+b.1+b.10+a.1

=a.10+a.1+b.10+b.1

=a.(10+1)+b.(10.1)

=a.11+b.11

=11.(a+b)11(vì 1111)

b)ab - ba

= 10a + b - (10b + a)

= 10a + b - 10b - a

= 9a - 9b = 9(a - b)

Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)

 

Bình luận (0)
LN
Xem chi tiết
NM
10 tháng 11 2018 lúc 14:20

Cách 1:

Do 20a+11b chia hết cho 5 mà 20a chia hết cho 5 nên 11b cũng chia hết cho 5 => b={0; 5}

Với b={0; 5} thì 80a đương nhiên chia hết cho 5 còn 29b có chữ số tận cùng ở kq là 0 hoặc 5 nên cũng chia hết cho 5 nên 80a+29b chia hết cho 5 khi 20a+11b chia hết cho 5

Cách 2: 

20a+11b chia hết cho 5 => 4x(20a+11b)=80a+44b chia hết cho 5

80a+44b-(80a+29b)=25b chia hết cho 5

=> 80a+29b chia hết cho 5

Bình luận (0)
PT
Xem chi tiết
PT
27 tháng 8 2021 lúc 16:25

giúp mik nếu đúg mik sẽ tik

 

Bình luận (0)
PT
27 tháng 8 2021 lúc 16:29

giúp mik ik

 

Bình luận (0)
H24
27 tháng 8 2021 lúc 16:30

a) \(A=3+3^2+3^3+...+3^{60}\)

Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)

\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)

b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)

 

Bình luận (1)
LD
Xem chi tiết
AH
27 tháng 11 2021 lúc 8:36

Lời giải:
Theo công thức hằng đẳng thức thì:

$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)

Với $n$ lẻ:

$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)

Bình luận (0)
NL
Xem chi tiết
NT
21 tháng 10 2023 lúc 21:50

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

Bình luận (0)
PK
Xem chi tiết
AH
22 tháng 11 2021 lúc 21:37

Lời giải:

a.

$2a+3b\vdots 13$

$\Leftrightarrow 2a+13a+3b\vdots 13$

$\Leftrightarrow  15a+3b\vdots 13$

$\Leftrightarrow 3(5a+b)\vdots 13$

$\Leftrightarrow  5a+b\vdots 13$

b.

$4a+3b\vdots 11$

$\Leftrightarrow 4a-11a+3b\vdots 11$

$\Leftrightarrow -7a+3b\vdots 11$

$\Leftrightarrow -(7a-3b)\vdots 11$

$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)

 

Bình luận (0)
DL
Xem chi tiết
MU
Xem chi tiết
NH
1 tháng 10 2023 lúc 13:43

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

Bình luận (0)
NH
1 tháng 10 2023 lúc 13:51

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

Bình luận (0)
NH
1 tháng 10 2023 lúc 13:54

b, B = 102010 + 14 

Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3

B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2 

Bình luận (0)
KN
Xem chi tiết
H24
18 tháng 4 2022 lúc 17:45
Bình luận (0)
H24
18 tháng 4 2022 lúc 17:46

S

S

S

Bình luận (0)

sai hết

Bình luận (0)