Những câu hỏi liên quan
NN
Xem chi tiết
PK
Xem chi tiết
AT
12 tháng 7 2021 lúc 10:40

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

Bình luận (3)
NT
12 tháng 7 2021 lúc 11:55

4) Ta có: \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)

\(=\sqrt{30-2\sqrt{16+6\sqrt{11+4\left(\sqrt{3}-1\right)}}}\)

\(=\sqrt{30-2\sqrt{16+6\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{30-2\sqrt{16+6\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{30-2\sqrt{28+6\sqrt{3}}}\)

\(=\sqrt{30-2\left(3\sqrt{3}+1\right)}\)

\(=\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)

Bình luận (0)
NT
12 tháng 7 2021 lúc 11:56

5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}-\sqrt{2}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=1\)

Bình luận (0)
PK
Xem chi tiết
PK
Xem chi tiết
DL
5 tháng 8 2021 lúc 16:33

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

Bình luận (0)
DL
6 tháng 8 2021 lúc 7:54

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

Bình luận (2)
NM
Xem chi tiết
HN
15 tháng 8 2019 lúc 14:17

a) \(2x\left(x-3\right)+6\left(3-x\right)=0\)

\(\Leftrightarrow2\left[x\left(x-3\right)+3\left(3-x\right)\right]=0\)

\(\Leftrightarrow x\left(x-3\right)+3\left(3-x\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Rightarrow x=3\)

b) \(3x\left(2x-5\right)-15\left(5-2x\right)=0\)

\(\Leftrightarrow3\left[x\left(2x-5\right)-5\left(5-2x\right)\right]=0\)

\(\Leftrightarrow x\left(2x-5\right)-5\left(5-2x\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{2}\end{cases}}\)

Bình luận (0)
NM
15 tháng 8 2019 lúc 18:46

bạn cho mình cách giải đc ko

Bình luận (0)
HD
Xem chi tiết
LL
28 tháng 3 2018 lúc 15:08

khi mk tính bằng máy tính thì kết quả không = 1 mà bằng 0,7136222575 nhé bn.

vì vậy k cần CM nữa đâu Kết quả không = 1. K tin thì tính thử đi!!!

Đây là câu trả lời của mk, k cho mk nha!!!

Bình luận (0)
HD
28 tháng 3 2018 lúc 15:18

mình tính máy tính rồi kết quả = 1 

Bình luận (0)
PK
Xem chi tiết
AH
19 tháng 7 2021 lúc 17:41

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

Bình luận (0)
AH
19 tháng 7 2021 lúc 17:43

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

Bình luận (0)
AH
19 tháng 7 2021 lúc 17:48

Bài 3:

a.

\(M=\left[\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right](\sqrt{6}+11)\)

\(=\left[\frac{15(\sqrt{6}-1)}{6-1}+\frac{4(\sqrt{6}+2)}{6-2^2}-\frac{12(3+\sqrt{6})}{3^2-6}\right](\sqrt{6}+11)\)

\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)

b.

\(N=\left[1-\frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1}\right].\left[\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}-1\right]\)

\(=(1-\sqrt{5})(-\sqrt{5}-1)=(\sqrt{5}-1)(\sqrt{5}+1)=5-1=4\)

Bình luận (0)
PK
Xem chi tiết
AT
12 tháng 7 2021 lúc 15:29

1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)

2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)

\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)

\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)

4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\sqrt{5}-2=-4\)

Bình luận (1)
NT
13 tháng 7 2021 lúc 0:01

1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)

4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)

Bình luận (0)
VK
Xem chi tiết
NL
20 tháng 9 2019 lúc 19:23

\(\sqrt{7}-\sqrt{5}=\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\sqrt{7}+\sqrt{5}}=\frac{2}{\sqrt{7}+\sqrt{5}}\)

\(\sqrt{5}-\sqrt{3}=\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}\)

Do \(\sqrt{7}>\sqrt{3}\Rightarrow\sqrt{7}+\sqrt{5}>\sqrt{5}+\sqrt{3}\Rightarrow\frac{2}{\sqrt{7}+\sqrt{5}}< \frac{2}{\sqrt{5}+\sqrt{3}}\)

\(\Rightarrow\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)

b/ \(\frac{1}{3}\sqrt{6}=\sqrt{\frac{2}{3}}\) ; \(6\sqrt{\frac{1}{3}}=2\sqrt{3}=\sqrt{12}\)

\(12>\frac{2}{3}\Rightarrow\sqrt{12}>\sqrt{\frac{2}{3}}\Rightarrow\frac{1}{3}\sqrt{6}< 6\sqrt{\frac{1}{3}}\)

Bình luận (0)