Cho tam giác ABC vuông tại A ,AB=9 cm AC=15cm.AD là tia phân giác của góc HAC.Tính AD
HELP em với
Cho tam giác ABC vuông tại A ,AB=9 cm AC=15cm.AD là tia phân giác của góc HAC.Tính AD
HELP em với
áp dụng định lí pytago cho tam giác abc vuông tại a
\(BC^2=\sqrt{AB^2+AC^2}=3\sqrt{34}\)
do AD là tia phân giác góc A nên
\(\dfrac{CD}{BD}=\dfrac{AC}{AB}=\dfrac{5}{3}\)
suy ra CD=\(\dfrac{15.\sqrt{34}}{8}\)
kẻ đường cao AH
suy ra \(AD^2=HD^2+AH^2\)
ta có AH.BC=AB.AC suy ra \(AH=\dfrac{45}{\sqrt{34}}\)
\(CH.BC=CA^2=225\) suy ra \(CH=\dfrac{75}{\sqrt{34}}\)
suy ra \(HD=CH-CD=...\)
thay vào tính được \(AD^2\) rồi tính dc AD
Cho tam giác ABC vuông tại A ,AB=9 cm AC=15cm.AD là tia phân giác của góc HAC.Tính AD
Cho tam giác ABC ( góc BAC=90 độ , AB<AC ) tia phân giác của góc BAC cắt tại D . Đường thẳng vuông góc với BC tại D cắt AC tại M và cắt tia đối của tia AB tại N
a) cm tam giác ABC đồng dạng với tam giác DBN và BA.BN=BD.BC
b) cm DB=Dm
mọi người giúp em giải với
xét ΔABC và ΔDBN ta có
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BDN}=90^o\)
=>ΔABC∼ΔDBN(g.g)
=>\(\dfrac{BA}{BD}=\dfrac{BC}{BN}\)
=>\(BA.BN=BD.BC\)
Cho tam giác ABC vuông tại A biết AB = 9 cm AC bằng 12 cm Kẻ BD là tia phân giác của góc B( d thuộc AC) kẻ dh vuông góc với BC( H thuộc BC). Trên tia đối của tia ab lấy điểm K sao cho a k = HC a) Chứng minh tam giác ABD= tam giác HBD b) So sánh DA và DC c) Chứng minh ba điểm k,d,hthẳng hàng
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác. Kẻ MK vuông góc với BC tại K.
a) Tính độ dài cạnh BC.
b) CM: AM=KM.
c) Kẻ AD vuông góc vs BC tại D. CM: Tia AK là tia phân giác của góc DAC.
d) CM: AB+AC<BC+AD.
bạn nào có lời giải bài này thì cho mk xin vs ạ :<
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại E Kẻ EH vuông góc với BC ( H Thuộc BC) a, Cho AB = 6 cm BC = 5 cm Tính AC?? b, Chứng Minh AB = BH c, kẻ AM vuông góc với BC tại M. Chứng minh AH là tia phân giác của góc MAC d, gọi K là giao điểm của AM và BE. Chứng minh tam giác AKE là tam giác cân ( Lưu ý : vẽ hình ms 5*)
a: Đề sai rồi bạn
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH
c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)
\(\widehat{MAH}+\widehat{BHA}=90^0\)
mà \(\widehat{BAH}=\widehat{BHA}\)
nên \(\widehat{CAH}=\widehat{MAH}\)
hay AH là tia phân giác của góc MAC
Cho Ta giác ABC vuông tại A, kẻ tia phân giác trong BD của góc ABC,D thuộc AC, gọi E là hình chiếu vuông góc của D trên BC, BD cắt AE tại H, tia ED và BA cắt nhau tại F
1) CM: Tam giác ABC = Tam giác EBD và AB = BE
2) CM: BD vuông góc với AE và H là trung điểm của AE
3) So sánh: AD và CD
CM: AF = CE và tam giác BFC cân
5) CM: AE song song với CF, BD song song với CF
Xin lỗi mình không thể chụp ảnh.
Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.
1. Xét tam giác ABD và tam giác EBD có:
BAD=BED=90o (gt)
ABD= EBD( BD là tia phân giác)
BD chung ( gt)
=> 2 tam giác = nhau
=> AB=BE ( 2 cạnh tương ứng)
Xét tam giác EBF và tam giác ABC có:
B1=B2(cmt)
A=E (cmt)
BE=BA( cmt)
=> 2 tam giác = nhau
2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)
3.Ta có: AD=ED( tam giác ABD= EBD) (1)
Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)
Từ (1)và (2) => DC>AD ( đcpm)
Ý 2:
Có: BA=BE(cmt)
BF=BC( tam giác BFE= BCA)
và BC= BE+EC ; BF= AB+AF
=> AF= EC
=> Tam giác BFC cân
5. Gọi giao của BH và FC là G.
Có tam giác BFC cân( cmt)
=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)
Mặt khác,BH vuông góc với AE
=> AE song song FC ( từ vuông gó đến song song)
Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.
cho tam giác ABC, AB=AC, I là trung trực của điểm BC
a,CM Tam giác ABI=tamgiác ACI
b,CM AI là tia phân giác của góc BAC
c,CM AI vuông góc với BC
d,Gọi Cx là tia phân giác của góc ngoài tại đỉnh C. CM Cx//AB
Cho tam giác ABC có AB=AC. Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E. Gọi O là giao điểm của BD và CE.
a) Cm: BD=CE
b) Cm: tam giác OEB= tam giác ODC
c) Cm: OA là tia phân giác của góc BAC
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
Bài mk lm như dzị ak