:(sqrt( cos( x))* cos( 300* x)+ sqrt( abs( x))- 0.7)* (4- x* x)^ 0.01* sqrt( 6- x^ 2)- sqrt( 6- x^ 2)
Giải pt : cosx(1−2sinx)2cos2x−sinx−1cosx(1−2sinx)2cos2x−sinx−1= √3
tk cho mình
Em ơi lớp 1 làm gì đã học đâu em
Mọi người thử nhập cái dưới đây zo google ik :)
(sqrt(cos(x))*cos(200 x)+sqrt(abs(x))-0.7)*(4-x*x)^0.01, sqrt(9-x^2), -sqrt(9-x^2) from -4.5 to 4.5
Chứng minh biểu thức sau không phụ thuộc vào $x$.
$P=\sqrt{\sin ^{4} x+6 \cos ^{2} x+3 \cos ^{4} x}+\sqrt{\cos ^{4} x+6 \sin ^{2} x+3 \sin ^{4} x}$.
Tìm hiệu của số tròn chục lớn nhất có 2 chữ số
Giải các pt sau:
a) \(\cos^2x-\cos x=0\)
b) \(2\sin2x\) + \(\sqrt{2}\sin4x=0\)
c) \(8\cos^2x+2\sin x-7=0\)
d) \(4\cos^4x+\cos^2x-3=0\)
e) \(\sqrt{3}\tan x-6\cot x+\left(2\sqrt{3}-3\right)=0\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)
Vậy...
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)
\(\Leftrightarrow8sin^2x-2sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
Vậy...
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow cos2x=\dfrac{1}{2}\)
\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)
Vậy...
e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))
\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow-8sin^2x+2sinx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\)
Với \(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Với \(sinx=-\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left(4cos^2x-3\right)\left(cos^2x+1\right)=0\)
\(\Leftrightarrow4cos^2x-3=0\left(\text{Vì }cos^2x+1>0\right)\)
\(\Leftrightarrow cos^2x=\dfrac{3}{4}\)
\(\Leftrightarrow cosx=\pm\dfrac{\sqrt{3}}{2}\)
Với \(cosx=\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)
Với \(cosx=-\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{5\pi}{6}+k2\pi\)
Chuyển biểu thức toán học sang pascal và ngược lại
a) \(\dfrac{1}{2n}\)≤\(\dfrac{3}{5}\)\(\cos\)2π
b)\(\dfrac{\sqrt{x^2+y^{3x}}}{a-\dfrac{a}{b}}z-\dfrac{1}{2}\)
c) Sqrt(a+2/(sqrt(2+a))-(x/a*b)
d) abs(x-2*y)+sqr(x*x)-2*cos(x)
d: \(=\left|x-2y\right|+\left(x\cdot x\right)^2-2\cdot cos\left(x\right)\)
Cho cos x= \(\frac{\sqrt{6}+\sqrt{2}}{4}\), tính P= 3 sin x+ cos x
Giải phương trình lượng giác sau
1) 2 cos 2x -\(\sqrt{3}\) = 0
2)\(\sqrt{3}\) tan x + 1 = 0
3) 2 cos2x = 1
4) 6 sin2 x- 13 sin x + 5 = 0
5) 5 cos 2x + 6 cos x + 1 = 0
6 ) 2 cos 2 2x - 3 cos 2x + 1 = 0
7) tan 2 x + ( 1 - \(\sqrt{3}\)) tan x - \(\sqrt{3}\) = 0
8) cos 6x + 2 sin 3x + 3 = 0
9) cos 2x - 4 cos x - 5 = 0
10 ) 3 cos 2 x = 2 sin 2 x + 4 sin x
11) cos 2x + sin2x + 2 cos x + 1 = 0
12) cos 4x + sin 4x + sin 2x = \(\dfrac{5}{2}\)
Tính đạo hàm:
1) \(y = \sin^2 \sqrt {4x+3}\)
2) \(y = \dfrac{3}{4}x^4 - \dfrac{34}{\sqrt{x}} + \pi\)
3) \(y = \sqrt{\dfrac{\sin4x}{\cos(x^2+2)}}\)
4) \(y = \dfrac{1}{\sqrt{\sin^2(6-x)+4x}}\)
5) \(y = x.\sin^2\left(\dfrac{2x-1}{4-x}\right)\)
6) \(y = \dfrac{4}{3}x^3 + \dfrac{3}{2\sqrt{x}} + \sqrt{2x}\)
7) \(y = \sqrt{\cot^3(x^2-1)} + \left(\dfrac{\sin2x}{\cos3x}\right)^4\)
8) \(y = \dfrac{\tan3x}{\cot^23x} - (\sin2x + \cos3x)^5\)
9) \(y = \cot^65x - \cos^43x + \sin3x\)
Coi như tất cả các biểu thức cần tính đạo hàm đều xác định.
1.
\(y'=2sin\sqrt{4x+3}.\left(sin\sqrt{4x+3}\right)'=2sin\sqrt{4x+3}.cos\sqrt{4x+3}.\left(\sqrt{4x+3}\right)'\)
\(=sin\left(2\sqrt{4x+3}\right).\dfrac{4}{2\sqrt{4x+3}}=\dfrac{2sin\left(2\sqrt{4x+3}\right)}{\sqrt{4x+3}}\)
2.
\(y'=3x^3+\dfrac{17}{x\sqrt{x}}\)
3.
\(y'=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\left(\dfrac{sin4x}{cos\left(x^2+2\right)}\right)'\)
\(=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\dfrac{4cos4x.cos\left(x^2+2\right)+2x.sin4x.sin\left(x^2+2\right)}{cos^2\left(x^2+2\right)}\)
4.
\(y'=-\dfrac{\left(\sqrt{sin^2\left(6-x\right)+4x}\right)'}{sin^2\left(6-x\right)+4x}=-\dfrac{\left[sin^2\left(6-x\right)+4x\right]'}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
\(=-\dfrac{2sin\left(6-x\right).\left[sin\left(6-x\right)\right]'+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}=-\dfrac{-2sin\left(6-x\right).cos\left(6-x\right)+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
\(=\dfrac{sin\left(12-2x\right)-4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
5.
\(y'=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).\left[sin\left(\dfrac{2x-1}{4-x}\right)\right]'\)
\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).cos\left(\dfrac{2x-1}{4-x}\right).\left(\dfrac{2x-1}{4-x}\right)'\)
\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+x.sin\left(\dfrac{4x-2}{4-x}\right).\dfrac{7}{\left(4-x\right)^2}\)
8.
\(y=tan^33x-\left(sin2x+cos3x\right)^5\)
\(\Rightarrow y'=3tan^23x.\left(tan3x\right)'-5\left(sin2x+cos3x\right)^4.\left(sin2x+cos3x\right)'\)
\(=\dfrac{9.tan^23x}{cos^23x}-5\left(sin2x+cos3x\right)^4.\left(2cos2x-3sin3x\right)\)
9.
\(y'=6cot^55x.\left(cot5x\right)'-4cos^33x.\left(cos3x\right)'+3cos3x\)
\(=-\dfrac{30.cot^55x}{sin^25x}+12cos^33x.sin3x+3cos3x\)
Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
a.
\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)
\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)
\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)
\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)
c.
\(2\sqrt{2}cos\left(\dfrac{5\pi}{12}-x\right)sinx=1\)
\(\Leftrightarrow\sqrt{2}\left(sin\left(\dfrac{5\pi}{12}\right)+sin\left(2x-\dfrac{5\pi}{12}\right)\right)=1\)
\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=\dfrac{-\sqrt{6}+\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=sin\left(-\dfrac{\pi}{12}\right)\)
\(\Leftrightarrow...\)