Những câu hỏi liên quan
LL
Xem chi tiết
H24
8 tháng 3 2018 lúc 12:07

Ta có:

\(-1\le x\le1;-1\le y\le1;-1\le z\le1\Leftrightarrow x^2;y^2;z^2\le1\) (1)

Trong 3 số \(x;y;z\)có ít nhất 2 số cùng dấu(giả xử là \(x;y\)) ta có: \(xy\ge0\Rightarrow2xy\ge0\)(2)

\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\le x^2+y^2+z^2\)(3)

ta sẽ chứng minh:

\(x^2+y^2+z^2\le2\) ta có: 

\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy\)(từ (2) )

\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)(từ (1)  )

\(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right)\)(từ (3) )

Bình luận (0)
TM
14 tháng 3 2018 lúc 18:03

Ta có:

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

 ..

Bình luận (0)
NV
Xem chi tiết
PT
3 tháng 5 2018 lúc 20:10

\(Do\)\(x;y\le1\Rightarrow x\ge xy\Rightarrow x-xy\ge0\)

Tương tự cộng vào đc ... >=0

Xét \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

\(\Leftrightarrow1-\left(x+y+x\right)+\left(xy+yz+zx\right)-xyz\ge0\)

\(\Leftrightarrow x+y+z-xy-yz-zx\le1-xyz\le1\)

Bình luận (0)
KN
Xem chi tiết
TD
28 tháng 12 2019 lúc 21:06

vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu

giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)

Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)

\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)

Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
NN
10 tháng 2 2020 lúc 9:42

cbfffffffffffffffffffffffffffffffffffffffsdhnc

Bình luận (0)
 Khách vãng lai đã xóa
NN
10 tháng 2 2020 lúc 9:42

b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
HP
22 tháng 11 2016 lúc 17:07

\(x\ge xy;y\ge yz;z\ge xz\)

=>\(x-xy\ge0;y-yz\ge0;z-xz\ge0\)

=>\(x+y+z-xy-yz-xz\ge0\left(1\right)\)

Xét \(\left(1-x\right)\left(1-y\right)\left(1-z\right)=-\left(x+y+z-xy-yz-xz+xyz-1\right)\ge0\)

=>\(x+y+z-xy-yz-xz\le1-xyz\)

\(0\le xyz\le1=>1-xyz\le1=>x+y+z-xy-yz-xz\le1\left(2\right)\)

Từ (1),(2) có đpcm

Bình luận (0)
HH
Xem chi tiết
HP
20 tháng 11 2016 lúc 10:02

\(0\le x,y,z\le1\) nên \(\left(x,y,z\right)=\left(0,0,0\right);\left(0,0,1\right);\left(0,1,0\right);\left(1,0,0\right);\left(1,0,1\right);\left(0,1,1\right);\left(1,1,1\right);\left(1,1,0\right)\)

thay các giá trị trên vào bt \(x+y+z-xy-yz-xz\) đều thấy t/mãn nó \(\le1\)

ko chắc vì đề chưa cho x,y,z nguyên

Bình luận (0)
BB
Xem chi tiết
H24
10 tháng 3 2021 lúc 12:59

Ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

Đặt \(Q=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge x+y+z+\dfrac{9}{x+y+z}\)

\(=x+y+z+\dfrac{1}{x+y+z}+\dfrac{8}{x+y+z}\)

Áp dụng BĐT Cô - si có :

\(\left(x+y+z\right)+\dfrac{1}{x+y+z}\ge2\sqrt{\left(x+y+z\right)\cdot\dfrac{1}{x+y+z}}=2\)

Do \(x+y+z\le1\Rightarrow\dfrac{8}{x+y+z}\ge8\)

Do đó : \(Q\ge8+2=10\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
NL
10 tháng 3 2021 lúc 13:00

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge x+y+z+\dfrac{9}{x+y+z}\)

\(VT\ge x+y+z+\dfrac{1}{x+y+z}+\dfrac{8}{x+y+z}\ge2\sqrt{\dfrac{x+y+z}{x+y+z}}+\dfrac{8}{1}=10\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
BB
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
AN
24 tháng 11 2016 lúc 11:36

Ta có 

x + y + z - xy - yz - xz \(\le1\)

\(\Leftrightarrow\left(1-x\right)+\left(xy-y\right)+\left(yz-xyz\right)+\left(xz-z\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(1-y-z+yz\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(\left(1-y\right)+\left(-z+yz\right)\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)+xyz\ge0\)

Đúng vì theo đề ta có: \(\hept{\begin{cases}1-x\ge0\\1-y\ge0\\1-z\ge0\end{cases}}\)và \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)

Vậy ta có ĐPCM

Bình luận (0)