Những câu hỏi liên quan
BB
Xem chi tiết
MH
24 tháng 9 2021 lúc 5:34

Ta có: 

\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)

\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)

Làm câu S tương tự như này rồi đối chiếu kết quả nha

Bình luận (0)
BB
Xem chi tiết
KF
Xem chi tiết
NT
19 tháng 11 2023 lúc 9:12

\(M=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)

=>\(M^3=7+5\sqrt{2}+7-5\sqrt{2}+3\cdot M\cdot\sqrt[3]{\left(7+5\sqrt{2}\right)\left(7-5\sqrt{2}\right)}\)

=>\(M^3=14+3M\cdot\left(-1\right)=14-3M\)

=>\(M^3+3M-14=0\)

=>\(M^3-2M^2+2M^2-4M+7M-14=0\)

=>\(\left(M-2\right)\left(M^2+2M+7\right)=0\)

=>M-2=0

=>M=2

\(\Leftrightarrow M=\dfrac{4}{2}=\dfrac{4}{\sqrt[3]{8}}>\dfrac{4}{\sqrt[3]{9}}=N\)

Bình luận (0)
HH
Xem chi tiết
NT
25 tháng 7 2023 lúc 10:37

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

Bình luận (0)
NT
25 tháng 7 2023 lúc 10:44

Bạn xem lại đề 2, phần mẫu của N

Bình luận (0)
HH
25 tháng 7 2023 lúc 21:25

@Nguyễn Đức Trí: Đề bài nó như vậy mà

Bình luận (0)
AK
Xem chi tiết
NT
11 tháng 8 2023 lúc 10:21

\(M=\sqrt[3]{\left(\sqrt{2}+1\right)^3}+\sqrt[3]{\left(1-\sqrt{2}\right)^3}\)

\(=\sqrt{2}+1+1-\sqrt{2}=2=\dfrac{4}{2}\)

\(2=\sqrt[3]{8}< \sqrt[3]{9}\)

=>\(\dfrac{4}{2}>\dfrac{4}{\sqrt[3]{9}}\)

=>M>N

Bình luận (0)
MP
Xem chi tiết
MP
7 tháng 5 2021 lúc 8:20

câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm

Bình luận (0)
KL
7 tháng 5 2021 lúc 8:30

1) So sánh:

N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)

M = \(\sqrt{18}-\sqrt{8}\)

\(=3\sqrt{2}-2\sqrt{2}\)

\(=\sqrt{2}\)

Ta có: \(1=\sqrt{1}\)

Mà 1 < 2

\(\Rightarrow\sqrt{1}< \sqrt{2}\)

Hay 1 \(< \sqrt{2}\)

Vậy N < M
 

Bình luận (0)
KL
7 tháng 5 2021 lúc 9:09

2) Với \(x>0;x\ne4;x\ne9\), ta có:

A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)

\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)

\(=\dfrac{-x}{x-2\sqrt{x}+2}\)

Bình luận (0)
Na
Xem chi tiết
MP
10 tháng 10 2018 lúc 19:45

ta có : \(A=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\) \(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)

làm tương tự với B rồi --> ...

Bình luận (0)
Na
10 tháng 10 2018 lúc 17:13

Mysterious Person giúp mk nha

Bình luận (0)
KN
Xem chi tiết
VH
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Bình luận (0)
VH
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Bình luận (0)
H24
Xem chi tiết