Bằng phương pháp quy nạp để :\(CMR:\forall n\inℕ^∗\)
\(a,n^5-n⋮5\)
\(b,6^{2n}+3^{n+2}+3^n⋮11\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng
\(2^{2^{2n}}+5⋮7\forall n\inℕ\)
Mọi người chứng minh bằng phương pháp quy nạp toán học giùm mình nha
dùng đồng dư đi :v
2^2^2n=16^n
có 16 đồng dư 2 mod 7
=>16^n đồng dư 2 mod 7
=>16^n+5 đồng dư 0 mod 7
CMR:\(5^n\)\(+2\cdot3^{n-1}\)\(+1⋮8,,\forall n\inℕ^∗\)
sử dụng phương pháp quy nạp
Bài 1 : .CMR tổng của 3 số chính phương liên tiếp không là số chính phương
Bài : 2. CMR :
a)7 . 52n + 12 . 6n \(\forall n\inℕ\)
b) 22n + 5 \(⋮\)7 \(\forall n\inℕ\)
Lưu ý : Bài 2 áp dụng tính chất đồng dư thức
ha tuan anh
Trả lời đc rồi hãng nói đến t i c k
Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à
và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá
Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi
Ko cho ra đc lời giải thì thôi đừng tl làm j cả
Chứng minh rằng:
\(n^n\ge\left(n+1\right)^{n-1}\forall n\inℕ^∗\)
Chứng minh bằng phương pháp quy nạp nhé
Với n = 1 thì \(x^1\ge2.x^0=0\)
Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).
Ta phải chứng minh :
\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)
\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)
Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, ta luôn có: \(sin^{2n}\alpha+cos^{2n}\alpha\le1\)
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, n>1; ta có: \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}>\dfrac{13}{24}\)
\(CMR:3^{2n+2}+2^{6n+1}⋮11\forall n\inℕ^∗\)
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm