3x(x-2)+5(x-2) phân tích đa thứ thành nhân tử
Vận dụng hằng đẳng thức A^2-B^2=(A-B)(A+B)
Phân tích đa thức thành nhân tử bằng kĩ thuật bổ sung hằng đẳng thức a)4x^2+5x-6 b)9x^2-6x-3 c)2x^2-3x-2 d)3x^2+x-2 e)3x^2+10x+3
a: =4x^2+8x-3x-6
=4x(x+2)-3(x+2)
=(x+2)(4x-3)
b: =3(3x^2-2x-1)
=3(3x^2-3x+x-1)
=3(x-1)(3x+1)
c: =2x^2-4x+x-2
=2x(x-2)+(x-2)
=(x-2)(2x+1)
d: =3x^2+3x-2x-2
=3x(x+1)-2(x+1)
=(x+1)(3x-2)
e: =3x^2+9x+x+3
=3x(x+3)+(x+3)
=(x+3)(3x+1)
a) \(4x^2+5x-6\)
\(=4x^2+8x-3x-6\)
\(=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(4x-3\right)\)
b) \(9x^2-6x-3\)
\(=3\left(3x^2-2x-1\right)\)
\(=3\left(3x^2-3x+x-1\right)\)
\(=3\left[3x\left(x-1\right)+\left(x-1\right)\right]\)
\(=3\left(x-1\right)\left(3x+1\right)\)
c) \(2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=\left(2x^2-4x\right)+\left(x-2\right)\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
d) \(3x^2+x-2\)
\(=3x^2+3x-2x-2\)
\(=\left(3x^2+3x\right)-\left(2x+2\right)\)
\(=3x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-2\right)\)
e) \(3x^2+10x+3\)
\(=3x^2+9x+x+3\)
\(=3x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(3x+1\right)\)
phân tích đa thức thành nhân tử dưới dạng hằng đẳng thức:
a)x3+3x2+3x+1
b)(x+y)2-9x2
a)x3+3x2+3x+1
=x3+3x2*1+3x*12+13
=(x+1)3
b)(x+y)2-9x2
=y2+2xy+x2-9x2
=y2-2xy+4xy-8x2
=y(y-2x)+4x(y-2x)
=(y-2x)(y+4x)
phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
a,(2x+5)^2-(x-9)^2
b,(3x+1)^2-4(x-2)^2
c,9(2x+3)^2-4(x+1)^2
d,4b^2c^2-(b^2+c^2-a^2)^2
a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)
=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)
=\(\left(3x-4\right).\left(x+14\right)\)
Phân tích đa thức thành nhân tử bằng hằng đẳng thức
a) a2y2+b2x2- 2abxy
b) 100 - (3x-y)2
\(a,a^2y^2+b^2x^2-2abxy\\ =\left(ay\right)^2-2abxy+\left(bx\right)^2\\ =\left(ay-bx\right)^2=\left(bx-ay\right)^2\\ ---\\ b,100-\left(3x-y\right)^2\\ =10^2-\left(3x-y\right)^2\\ =\left(10-3x+y\right)\left(10+3x-y\right)\)
a) \(=\left(ay\right)^2-2abxy+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
b) \(100-\left(3x-y\right)^2\)
\(=10^2-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
phân tích đa thức thành nhân tử dùng hằng đẳng thức
a/ (x^2+y^2 - 5)^2 - 4(xy-2)^2
b/ (9x^2 + 90x + 225) - (x - 7)^2
a) =( x2+y2-5)2-[2(xy-2)]2
=( x2+y2-5)2- (2xy-4)2
=(x2+y2-5+2xy-4)(x2+y2-5-2xy+4)
=[(x+y)2-9][(x-y)2-1]
phân tích tiếp HĐT 2 ở 2 thừa số
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
Phân tích các đa thức sau thành nhân tử bằng cách dùng hằng đẳng thức
a) (3x + 1)^2 - 4(x - 2)^2
b) (a^2 + b^2 - 5)^2 - 4(ab +2)^2
Phân tích các đa thức sau thành nhân tử bằng phương pháp tách một hạng tử thành nhiều hạng tử
a) 3x^2 + 9x - 30
b) x^3 - 5x^2 - 14x
Làm nhớ từng bước cho dễ hiểu....
Làm đúng tick sau 30 giây làm bài
1.a) (3x+1)2-4(x-2)2= (3x+1)2-[2(x-2)]2=[(3x+1)-2(x-2)][(3x+1)+2(x-2)]=(x+3)(5x-1)
b) (a2+b2-5)2-4(ab+2)2= (a2+b2-5)2-[2(ab+2)]2 = (a2+b2-5-2ab-4)(a2+b2-5+2ab+4)=[(a-b)2-9][(a+b)2-1]
2. 3x2+9x-30=3x2-6x+15x-30=3x(x-2)+15(x-2)=3(x+5)(x-2)
b. x3-5x2-14x=x3+2x2-7x2-14x=x2(x+2)-7x(x+2)=(x2-7x)(x+2)
a) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left[2.\left(x-2\right)\right]^2\)
\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)
\(=\left[3x+1-2x+4\right].\left[3x+1+2x-4\right]\)
\(=\left(x+5\right)\left(5x-3\right)\)
b) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left[2.\left(ab+2\right)\right]^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left[\left(a-b-3\right)\left(a-b+3\right)\right].\left[\left(a+b-1\right)\left(a+b+1\right)\right]\)
a) \(3x^2+9x-30\)
\(=3\left(x^2+3x-10\right)\)
\(=3\left(x^2-2x+5x-10\right)\)
\(=3.\left[x\left(x-2\right)+5.\left(x-2\right)\right]\)
\(=3.\left[\left(x+5\right)\left(x-2\right)\right]\)
b) \(x^3-5x^2-14x\)
\(=x\left(x^2-5x-14\right)\)
\(=x\left(x^2+2x-7x-14\right)\)
\(=x.\left[x\left(x+2\right)-7.\left(x+2\right)\right]\)
\(=x.\left[\left(x-7\right)\left(x+2\right)\right]\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
16 - ( a-b)2
\(=\left(4-a+b\right)\left(4+a-b\right)\)